帮助 关于我们

返回检索结果

智能超材料研究与进展
Research Advance in Smart Metamaterials

查看参考文献72篇

于相龙   周济 *  
文摘 本文以智能超材料关键技术为主线,基础研究和新产品研发为辅,简要论述近年来智能超材料的发展现状和趋势。根据智能超材料所调控激元的不同,可分为智能电磁超材料,智能机械超材料,智能热学超材料,智能耦合超材料,此外两项关键技术为智能超材料新型设计与仿真技术和材料制备技术与材料基因工程。这些智能超材料在科学基础研究方面涉及超材料中多物理场耦合机制,新型人工原子与人工分子设计,超材料与自然材料的融合,超材料可调性探索和新型传感型超材料机制探求。基础研发和技术拓展将推进智能超材料施展到更加广泛的应用领域,如微型天线及无线互联,光电磁隐身,医学图像上用的完美成像,航空航天和交通车辆所用的智能蒙皮,精密仪器制程与片上实验室集成型超材料等。基于上述国内外智能超材料研究的发展趋势,本文进行了系统性的分类厘清,并分析了其研究现状,给出了我国智能超材料发展的美好愿景。
其他语种文摘 Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.
来源 材料工程 ,2016,44(7):119-128 【核心库】
DOI 10.11868/j.issn.1001-4381.2016.07.020
关键词 超材料 ; 光学超材料 ; 机械超材料 ; 热学超材料 ; 智能耦合超材料
地址

清华大学材料学院, 新型陶瓷材料与精细工艺国家重点实验室, 北京, 100084

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 一般工业技术
基金 国家自然科学基金项目 ;  博士后项目基金
文献收藏号 CSCD:5761899

参考文献 共 72 共4页

1.  Shelby R A. Experimental verification of a negative index of refraction. Science,2001,292(5514):77-79 被引 802    
2.  Valentine J. Three-dimensional optical metamaterial with a negative refractive index. Nature,2008,455(7211):376-379 被引 109    
3.  Fang N. Sub-diffraction-limited optical imaging with a silver superlens. Science,2005,308(5721):534-537 被引 226    
4.  Zhang X. Superlenses to overcome the diffraction limit. Nature Materials,2008,7(6):435-441 被引 61    
5.  Gansel J K. Gold helix photonic metamaterial as broadband circular polarizer. Science,2009,325(5947):1513-1515 被引 117    
6.  Pendry J B. Controlling electromagnetic fields. Science,2006,312(5781):1780-1782 被引 460    
7.  Liu R. Broadband ground-plane cloak. Science,2009,323(5912):366-369 被引 99    
8.  Genov D A. Mimicking celestial mechanics in metamaterials. Nature Physics,2009,5(9):687-692 被引 21    
9.  彭茹雯. 浅说人工微结构材料与光和声的调控研究. 物理,2012,41(9):569-574 被引 1    
10.  Veselago V G. The electrodynamics of substances with simultaneously negative values of and μ. Physics-Uspekhi,1968,10(4):509-514 被引 646    
11.  Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters,2000,85(18):3966 被引 772    
12.  Cui T J. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science and Applications,2014,3(10):e218 被引 212    
13.  Giovampaola C D. Digital metamaterials. Nature Materials,2014,13(12):1115-1121 被引 38    
14.  Liu X. Metamaterial all-optical switching based on resonance mode coupling in dielectric meta-atoms. ArXiv Preprint,2014,1412:3338 被引 1    
15.  Wu H Y. Microwave memristive-like nonlinearity in a dielectric metamaterial. Scientific Reports,2014,4:5499 被引 2    
16.  Zhao Q. Mie resonance-based dielectric metamaterials. Materials Today,2009,12(12):60-69 被引 17    
17.  Soukoulis C M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics,2011,5(9):523-530 被引 60    
18.  Kadic M. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters,2012,100(19):191901 被引 30    
19.  Buckmann T. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications,2014,5:4130 被引 27    
20.  Brale S. Experiments on seismic metamaterials: Molding surface waves. Physical Review Letters,2014,112(13):421-431 被引 17    
引证文献 21

1 祝叶华 未来世界由超材料建构 科技导报,2016,34(18):14-26
被引 1

2 张学骜 热学超材料研究进展 光电工程,2017,44(1):49-63
被引 2

显示所有21篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号