帮助 关于我们

返回检索结果

基于微震监测的地下水封石油洞库施工期围岩稳定性分析
Stability analysis of the surrounding rock of underground water-sealed oil storage caverns based on microseismic monitoring during construction

查看参考文献34篇

马克 1   唐春安 2   梁正召 2   吴疆 3   徐奴文 4   庄端阳 2  
文摘 采用加拿大ESG 微震监测系统对锦州某大型地下水封石油洞库局部开挖过程进行实时监测和分析,圈定监测范围内围岩潜在危险区域,再现开挖过程中洞库失稳区域的岩体微破裂萌生、发展和集聚。结果表明:(1)采用人工定点敲击试验对监测系统定位性能进行测试,确定研究区域岩体整体等效P 波波速为5 200 m/s,传感器阵列范围内的震源定位误差小于8 m;(2)监测区域岩体微破裂呈2个条带状聚集,一条位于水幕巷道6东侧,水幕巷道1和2范围,与水平面呈缓倾角。另一条位于储油洞室1北与1南范围2+40~2+60里程区域内,与该区域辉绿岩脉分布范围一致,说明微震监测系统可以查明判别岩脉等软弱结构面情况。这是由于大断面的储油洞室的强开挖卸荷,高能量的释放导致岩脉的“过度”损伤,从而诱发大量的微破裂。研究结果证明微震监测技术在地下水封石油洞库这种特殊岩体结构中应用的可行性,为后期大规模微震监测系统的构建与实施提供参考依据。
其他语种文摘 The real-time monitoring and analysis of the microseismic activities of the cave rocks of a large underground water-sealed oil storage cavern in Jinzhou during the disturbance caused by strong excavation were performed using the Canadian ESG monitoring system. The potential failure regions of the cave rocks within the scope of monitoring were identified. The initiation,development and agglomeration process of the rock micro-cracks during excavation were reproduced. The P wave velocity was determined to be 5 200 m/s with the error of source location less than 8 m within the scope of the sensor array. Micro-cracks of rocks within the scope were aggregated into two bands. One was located to the east of water curtain tunnel 6,in between the water curtain tunnels 1 and 2,and had a low angle with the horizontal plane. The other was located in 2+40-2+60 mileage between the oil storage grotto 1-North and 1-South,and shared the same distribution with the diabase dikes in the region. The microseismic monitoring system identified the condition of the weak structural surface like dikes. The strong excavation disturbance of the large section oil storage caverns and the release of large amount of energy led to the“over damage”of rock and resulted in a large number of micro-cracks. The research results proved the feasibility of applying the microseismic monitoring technology in the special rock mass structures like underground water-sealed oil storage caverns.
来源 岩石力学与工程学报 ,2016,35(7):1353-1365 【核心库】
DOI 10.13722/j.cnki.jrme.2015.1137
关键词 岩石力学 ; 地下水封石油洞库 ; 开挖卸荷 ; 微震监测 ; 能量释放
地址

1. 中国科学院力学研究所, 北京, 110190  

2. 大连理工大学岩石破裂与失稳研究中心, 辽宁, 大连, 116024  

3. 廊坊中油朗威工程项目管理有限公司, 河北, 廊坊, 065000  

4. 四川大学水利水电学院, 四川, 成都, 610065

语种 中文
文献类型 研究性论文
ISSN 1000-6915
学科 建筑科学
基金 国家自然科学基金资助项目 ;  国家973计划 ;  中国博士后科学基金
文献收藏号 CSCD:5749000

参考文献 共 34 共2页

1.  王章琼. 我国大陆地下水封洞库库址区地应力场分布规律统计分析. 岩土力学,35(增):251-256 被引 1    
2.  Sun J P. Effects of anisotropic permeability of fractured rock masses on underground oil storage caverns. Tunnelling and Underground Space Technology,2010,25(5):629-637 被引 7    
3.  Li S C. Discrete element analysis of hydro-mechanical behavior of a pilot underground crude oil storage facility in granite in China. Tunnelling and Underground Space Technology,2014,40(2):75-84 被引 9    
4.  Gnirk P F. On the formulation of stability and design criteria for compressed air energy storage in hard rock caverns. The 14th Intersociety Energy Conversion Engineering Conference,1979:429-440 被引 1    
5.  陈奇. 液化石油气地下洞库围岩稳定性分析-以山东某地实际工程为例. 煤田地质与勘探,2002,30(3):33-36 被引 4    
6.  Tezuka M. Latest technology of underground rock cavern excavation in Japan. Tunnelling and Underground Space Technology,2003,18(2/3):127-144 被引 15    
7.  连建发. 锦州大型地下水封LPG 洞库岩体完整性参数及围岩稳定性评价研究[博士学位论文],2004 被引 1    
8.  Park J J. Design of pyongtaek LPG storage terminal underneath Lake Namyang:a case study. Tunnelling and Underground Space Technology,2005,20(5):463-478 被引 6    
9.  王芝银. 大型地下储油洞粘弹性稳定性分析. 岩土力学,2005,26(11):1705-1710 被引 10    
10.  徐方. 分形理论在青岛某地下水封石油储备库工程中的综合应用[硕士学位论文],2006 被引 1    
11.  陈祥. 黄岛地下水封石油洞库岩体质量评价及围岩稳定性分析[博士学位论文],2007 被引 2    
12.  王怡. 地下储油岩库稳定性的三维流固耦合分析. 中国石油大学学报:自然科学版,2009,33(3):132-137 被引 3    
13.  唐春安. 岩石破裂过程中的灾变,1993:70-73 被引 11    
14.  Kaiser P K. Canadian rockburst support handbook,1996 被引 34    
15.  Ma T H. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II hydropower station. Tunnelling and Underground Space Technology,2015,49(6):345-368 被引 21    
16.  Feng G L. Sectional velocity model for microseismic source location in tunnels. Tunnelling and Underground Space Technology,2015,45(1):73-83 被引 13    
17.  Lu C P. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration. International Journal of Rock Mechanics and Mining Sciences,2015,76(6):18-32 被引 30    
18.  姜福兴. 基于微震监测的千米深井厚煤层综放面支架围岩关系研究. 采矿与安全工程学报,2014,31(2):167-174 被引 11    
19.  唐礼忠. 冬瓜山铜矿微震监测系统及其应用研究. 金属矿山,2006,3(10):41-44 被引 20    
20.  李庶林. 凡口铅锌矿多通道微震监测系统及其应用研究. 岩石力学与工程学报,2005,24(12):2048-2053 被引 67    
引证文献 9

1 马克 基于微震监测的大岗山高拱坝坝踵蓄水初期变形机制研究 岩石力学与工程学报,2017,36(5):1111-1121
被引 5

2 曹伟 基于小波包分解重构的微地震信号降噪方法 电子测量与仪器学报,2018,32(4):134-143
被引 7

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号