帮助 关于我们

返回检索结果

基于响应面法的玉米秸秆成型工艺优化
Process optimization of corn stover compression molding experiments based on response surface method

查看参考文献20篇

文摘 为了研究玉米秸秆成型过程中各参数之间的交互作用,获得最佳的工艺参数,该文采用5因素的响应面试验设计研究了原料水分(8%~24%)、温度(50~150 ℃)、压缩速度(10~50 mm/min)、压力(51.0~127.4 MPa)、保压时间(10~50 s)5个成型参数对玉米秸秆成型颗粒的松弛密度、Meyer强度以及压缩比能耗3个成型技术指标的影响,建立了响应面模型,结合成型燃料标准,获得了最佳的工艺参数,并对优化后的试验参数进行了试验验证。试验结果表明:在选取试验参数范围内,温度、原料水分、压力均会对技术指标产生较大影响;而压缩速度和保压时间所产生的影响相对较小。最优化的工艺参数(压力、温度、水分)为:4 kN(51.0 MPa)、110.8 ℃、17%,在该参数组合下的验证试验结果为:松弛密度为1031 kg/m~3,Meyer强度为27.1 N/m~2,比能耗为10.03 kJ/kg。该研究可为秸秆生物质成型燃料制备产业提供参考。
其他语种文摘 The compression process parameters (preheating temperature, raw material moisture content, compression speed, compression force, and the holding time etc.) have great influence on the energy consumption and product quality of biomass pellet. Choosing the optimal parameters can improve the pellet quality, as well as reduce energy consumption of molding. Meyer hardness is an important strength index, it reflects the solid's ability to resist deformation. Meyer strength is used to characterize the durability because it's difficult to measure durability in a single pellet formation experiment with standard method. Response surface method is an effective method of parameter optimization. In this research, we used a five-factor BBD experimental design to determine the effects of the raw material moisture content (8%-24%), the preheating temperature (50-150 ℃), compression speed (10-50 mm/min), compression force (51.0-127.4 MPa), the holding time (10-50 s) to the three technical indicators (pellet relaxed density, Meyer hardness, and specific energy consumption). The result showed that within the scope of selected experimental parameters, preheating temperature, material moisture content, and compression force had a larger influence on the three technical indicators, while the impact of compression speed and the holding time was relatively small. With preheating temperature going up from 50 ℃ to 150 ℃, pellet relaxed density and Meyer hardness increased obviously. When preheating temperature was less than 100 ℃, specific energy consumption reduced with preheating temperature increasing. While preheating temperature was more than 100 ℃, with increase of the preheating temperature, specific energy consumption rose. With raw material moisture content going up from 8% to 24%, pellet relaxed density, Meyer hardness and specific energy consumption decreased rapidly. With compression force going up from 51.0 to 127.4 MPa, pellet relaxed density, Meyer hardness and specific energy consumption increased clearly. ANOVA analysis was done with the original data, the model was optimized, and a response surface model was established. Relaxed density was fitted with improved quadratic model. Meyer hardness was fitted with simplified quartic model, and specific energy consumption was fitted with another improved quadratic model. Relaxed density, Meyer hardness and specific energy consumption can be calculated through process parameters with the established model, which was used to predict the experimental result. From the model, we concluded that preheating temperature interacted with raw material moisture content. With preheating temperature and raw material moisture content going up, relaxed density and Meyer hardness can remain the same. When preheating temperature was below 100 ℃, preheating temperature went up and raw material moisture content went down. Specific energy consumption can remain the same. When preheating temperature was above 100 ℃, preheating temperature and raw material moisture content went up, specific energy consumption remained the same. And that was consistent with bonding mechanism of moisture and lignin. Considering the existing biomass pellet fuel standard, the relaxed density shouldn't be less than 1000 kg/m~3. In the meantime, Meyer hardness can meet the practical requirements. So the requirement of optimization was set as: relaxed density not less than 1000 kg/m~3, minimize specific energy consumption.
来源 农业工程学报 ,2016,32(13):223-227 【核心库】
DOI 10.11975/j.issn.1002-6819.2016.13.032
关键词 秸秆 ; 优化 ; 燃料 ; 压缩成型 ; Meyer强度
地址

中国科学院广州能源研究所, 中国科学院可再生能源重点实验室;;广东省新能源和可再生能源研究开发与应用重点实验室, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 1002-6819
学科 能源与动力工程
基金 广东省省级科技模本计划项目 ;  广东省中国科学院全面战略合作项目
文献收藏号 CSCD:5736994

参考文献 共 20 共1页

1.  Lam P Y. Effects of pelletization conditions on breaking strength and dimensional stability of Douglas fir pellet. Fuel,2014,117:1085-1092 被引 3    
2.  Stelte W. Fuel pellets from wheat straw: The effect of lignin glass transition and surface waxes on pelletizing properties. Bioenergy Research,2012,5(2):450-458 被引 3    
3.  Castellano J M. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses,2015:629-636 被引 1    
4.  Lu D. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy,2014,69:287-296 被引 4    
5.  涂德浴. 水稻秸秆与木屑混合原料热压成型试验. 农业工程学报,2015,31(20):205-211 被引 12    
6.  农业部规划设计研究院. 生物质固体成型燃料试验方法第8部分:机械耐久性,行业标准-农业,2010 被引 1    
7.  Li H. Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy,2012,93:680-685 被引 15    
8.  Peng J H. Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy & Fuels,2013,27(2):967-974 被引 5    
9.  Lam P S. Energy input and quality of pPellets made from steam-exploded douglas fir(Pseudotsuga menziesii). Energy & Fuels,2011,25(4):1521-1528 被引 5    
10.  Zafari A. Factors affecting mechanical properties of biomass pellet from compost. Environmental Technology,2014,35(4):478-486 被引 6    
11.  Tumuluru J S. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Research,2015,8(1):388-401 被引 8    
12.  谢启强. 生物质成型燃料物理性能和燃烧特性研究,2008 被引 5    
13.  Carone M T. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass & Bioenergy,2011,35(1):402-410 被引 14    
14.  Mani S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass & Bioenergy,2006,30(7):648-654 被引 31    
15.  Van Dam J E G. Process for production of high density/high performance binderless boards from whole coconut husk-Part 1: Lignin as intrinsic thermosetting binder resin. Industrial Crops and Products,2004,19(3):207-216 被引 4    
16.  Kaliyan N. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology,2010,101(3):1082-1090 被引 39    
17.  Thomas M. Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Animal Feed Science and Technology,1998,70(1/2):59-78 被引 7    
18.  Irvine G M. The Glass Transitions of lignin and hemicellulose and their measurement by differential Thermal-Analysis. Tappi Journal,1984,67(5):118-121 被引 4    
19.  张静. 原料含水率对生物质固体燃料成型效果的影响. 山西农业科学,2012(1):65-67 被引 12    
20.  . 生物质成型燃料--北京市地方标准. 2009第三届中国民用炉具研讨会暨产品展示会、2009生物质成型燃料加工设备及技术交流会,2009 被引 1    
引证文献 21

1 李伟振 碱性木质素对玉米秸秆成型特性的影响 林产化学与工业,2017,37(6):35-42
被引 4

2 姜洋 成型参数对桉树加工剩余物成型颗粒品质影响的实验研究 太阳能学报,2017,38(4):900-905
被引 6

显示所有21篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号