帮助 关于我们

返回检索结果

水稻土嗜中性微好氧亚铁氧化菌多样性及微生物成矿研究
Diversity and Biomineralization of Microaerophilic Iron-oxidizing Bacteria in Paddy Soil

查看参考文献44篇

陈娅婷 1   李芳柏 2 *   李晓敏 2  
文摘 微生物驱动亚铁氧化过程在水稻土中十分普遍,该过程被认为是水稻土中联接各生物地球化学过程的中心枢纽。嗜中性微好氧亚铁氧化菌能够利用氧气作为电子受体将亚铁氧化成三价铁,获得生长所需能量。然而,对水稻土中微好氧亚铁氧化菌的多样性与分布及其微生物成矿类型仍然未知。采用铁氧反向浓度梯度管法富集培养并分离水稻土中微好氧亚铁氧化菌,利用16S rRNA基因测序手段分析培养过程中微好氧亚铁氧化菌群落多样性与分布,并初步研究分离得到的亚铁氧化菌的亚铁氧化能力与生物成矿类型。结果表明,在富集培养和传代培养过程中,Azospira、Magnetospirillum、Clostridium和Rhodoplanes等属在群落中占优势。在分离最后阶段,得到几种细菌的混合菌团,可能是由于这几种亚铁氧化菌存在互养关系而难以纯化分离,其中占优势的为Azospira(63.9%)。Azospira是一类已知硝酸盐依赖型FeOB,可以利用硝酸盐、氯酸盐和高氯酸盐为电子受体进行厌氧亚铁氧化。混合菌团具有活跃的亚铁氧化能力,反应第15天生成6.9 mmol?L~(-1) HCl-Fe。 XRD结果表明菌团氧化亚铁形成的三价铁矿物类型为无定形铁氧化物。TEM结果显示微好氧FeOB菌体呈杆状,细菌表面和周围散布着颗粒状的物质,可能是由无定形铁氧化物组成。综上所述,认为反硝化细菌可能在水稻土有氧-无氧界面进行微好氧亚铁氧化,其氧化亚铁的产物为无定形铁氧化物。
其他语种文摘 Microbially mediated iron oxidation is prevalent and thought to be central to many biogeochemical processes in paddy soils. Neutrophilic, microaerophilic Fe(Ⅱ)-oxidizing bacteria (FeOB) can oxidize Fe(Ⅱ) using O_2 as electron acceptor to gain energy for growth, yet little is known about the diversity and distribution of FeOB and the formation of Fe(Ⅲ)-minerals by microaerophilic FeOB in paddy soil. In this study, gradient tubes with opposing gradient Fe(Ⅱ) and O_2 were used to enrich and isolate microaerophilic FeOB from paddy soil, where 16S rRNA gene sequencing methods were used to profile the microbial diversity and distribution of FeOB in continuous cultivation and then the ability of Fe(Ⅱ) oxidation by the isolated FeOB and the Fe(Ⅲ) products were tested as well. The results showed that Azospira, Magnetospirillum, Clostridium and Rhodoplanes were abundant in the cultured communities. A mixture of several species remained together till the last stage of isolation, which might due to the syntrophic associations among the FeOBs. Among them, Azospira was the dominant FeOB with a relative abundance of 63.9%. Azospira is a well-known nitrate-reducing FeOB, which is capable of utilizing nitrate, chlorate or perchlorate as alternative electron acceptors. The isolated FeOB mixture actively oxidized Fe(Ⅱ), the concentration of HCl-Fe was 6.9 mmol?L~(-1) on day 15. XRD results revealed that amorphous iron oxides were formed as the products of microbial iron oxidation. TEM results showed that cells of microaerophilic FeOB were rod-shaped with globular shaped particles sparsely deposited on the surface or around the cell, which might consist of amorphous Fe(Ⅲ) oxides. Overall, our results revealed that denitrifying bacteria might be capable of microaerophilic Fe(Ⅱ) oxidation which could be stimulated in the oxic-anoxic interface in paddy soil, and amorphous iron oxides were formed as microbial Fe(Ⅱ) oxidation by such bacteria.
来源 生态环境学报 ,2016,25(4):547-554 【核心库】
DOI 10.16258/j.cnki.1674-5906.2016.04.001
关键词 微好氧亚铁氧化 ; 生物成矿 ; 水稻土 ; Azospira ; 无定形铁氧化物
地址

1. 中国科学院广州地球化学研究所, 广东, 广州, 510640  

2. 广东省生态环境与土壤研究所, 广东, 广州, 510650

语种 中文
文献类型 研究性论文
ISSN 1674-5906
学科 农业基础科学;环境科学基础理论
基金 国家自然科学基金重点项目
文献收藏号 CSCD:5727435

参考文献 共 44 共3页

1.  Benz M. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology,1998,169(2):159-165 被引 19    
2.  Chaudhuri S K. Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and Environmental Microbiology,2001,67(6):2844-2848 被引 20    
3.  Chen Y. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environmental Science and Technology,2014,48(10):5537-5545 被引 2    
4.  Croal L R. The genetics of geochemistry. Annual Review of Genetics,2004,38:175-202 被引 5    
5.  Desantis T Z. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research,2006,34(suppl 2):W394-W399 被引 29    
6.  Ding L J. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-~(13)C-acetate probing coupled with pyrosequencing. The ISME Journal,2015,9(3):721-734 被引 15    
7.  Druschel G K. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron (Ⅱ) oxidizing microorganisms. Geochimica et Cosmochimica Acta,2008,72(14):3358-3370 被引 8    
8.  Edwards K J. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-Proteobacteria from the deep sea. Applied and Environmental Microbiology,2003,69(5):2906-2913 被引 22    
9.  Emerson D. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology,2010,64:561-583 被引 34    
10.  Emerson D. Enrichment and Isolation of Iron-Oxidizing Bacteria at Neutral pH. Methods in Enzymology,2005,397:112-123 被引 6    
11.  Emerson D. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Applied and Environmental Microbiology,1997,63(12):4784-4792 被引 21    
12.  Emerson D. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Applied and Environmental Microbiolog,1994,60(11):4022-4031 被引 10    
13.  Emerson D. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Applied and Environmental Microbiology,1999,65(6):2758-2761 被引 26    
14.  Fouhy F. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PloS one,2015,10(3):e0119355 被引 9    
15.  Geelhoed J S. EPPING E, et al. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiology Ecology,2009,70(1):54-65 被引 4    
16.  Ikenaga M. Bacterial communities associated with nodal roots of rice plants along with the growth stages: estimation by PCR-DGGE and sequence analyses. Soil Science and Plant Nutrition,2003,49(4):591-602 被引 3    
17.  Joshi N A. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files,2011 被引 1    
18.  Kappler A. Formation of Fe (Ⅲ)-minerals by Fe (Ⅱ)-oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta,2004,68(6):1217-1226 被引 22    
19.  Kappler A. Fe (Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe (Ⅱ)-oxidizer strain BoFeN1. Geobiology,2005,3(4):235-245 被引 23    
20.  Kennedy C B. Surface chemistry and reactivity of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. Geobiology,2003,1(1):59-69 被引 3    
引证文献 7

1 侯海军 水分管理对稻田细菌丰度与群落结构的影响 生态环境学报,2016,25(9):1431-1438
被引 11

2 张宁博 零价铁自养反硝化过程活性污泥矿化及解决措施 环境科学,2017,38(9):3793-3800
被引 3

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号