帮助 关于我们

返回检索结果

环戊烷-甲烷水合物生成过程的温度特性
System temperature properties in the process of the cyclopentane-methane binary hydrates formation

查看参考文献27篇

文摘 研究了环戊烷-甲烷水合物生成过程中的温度变化,分析了体系的热量损失。在不同初始温度(4℃、8℃和12℃)、压力(2MPa、4MPa、6MPa、8MPa和10MPa)和进气方式(一次性进气、连续进气和间歇进气)的条件下,测定了釜内温度,对比了以上各因素对釜内最高温度(T_(max))与釜内最大温升(ΔT_(max))的影响。实验表明,T_(max)主要受压力和进气方式影响,初始温度对其影响不明显;ΔT_(max)受初始温度、压力和进气方式影响显著。在间歇进气方式下,初始温度越低、压力越高,ΔT_(max)越大。其中,在初始温度为4℃、压力为10MPa、进气时间间隔为30min的间歇进气方式下,ΔT_(max)可达16.5℃。此外,由热量分析发现,体系的主要热量损耗表现为体系向环境中的散热。因此,提高保温层的绝热性能,有利于提高水合物生成热的热量有效利用率。
其他语种文摘 In this paper,the changes of the system temperatures and heat loss were investigated during the formation of cyclopentane-methane binary hydrates. The system temperature measurements were carried out under the conditions of initial temperatures of 4℃,8℃,and12℃,pressures of 2MPa, 4MPa,6MPa,8MPa and 10MPa,and different gas injection modes (single,continuous and intermittent). The maximum temperature (T_(max)) and the maximum temperature increase (ΔT_(max)) in the system were compared. The experimental results illustrate that the pressures and gas injection modes have significant influence on T_(max) while the initial temperatures,pressures and gas injection modes all significantly effect ΔT_(max). Thus,the conditions of lower initial temperature,higher pressure and injecting intermittently help to increase ΔT_(max). Under the condition of 4℃ and 10MPa,intermittent injection with the interval time of 30minute,the maximum value of ΔT_(max) is 16.5℃. In addition,the heat analysis results indicate that the main heat loss is from the inner reactor to the outside cold environment. Therefore,improving the insulation properties of insulating layer is helpful to enhance the heating efficiency in the process of the cyclopentane-methane binary hydrates formation.
来源 化工进展 ,2016,35(5):1418-1427 【核心库】
DOI 10.16085/j.issn.1000-6613.2016.05.022
关键词 水合物 ; 甲烷 ; 环戊烷 ; 生成热 ; 最大温升
地址

中国科学院广州能源研究所, 中国科学院天然气水合物重点实验室;;广东省新能源和可再生能源研究开发与应用重点实验室, 广东, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 1000-6613
学科 化学工业
基金 中海油研究总院委托项目 ;  中石油-中科院高端战略联盟计划 ;  国家自然科学基金国家杰出青年科学基金 ;  国家自然科学基金
文献收藏号 CSCD:5704870

参考文献 共 27 共2页

1.  Sloan E D. Clathrate hydrates of natural gases,2007 被引 31    
2.  任宏波. 水合物法海水淡化技术应用进展. 海洋地质前沿,2011(6):74-78 被引 6    
3.  Ghalavand Y. A review on energy consumption of desalination processes. Desalination and Water Treatment,2015,54(6):1526-1541 被引 2    
4.  Linga P. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide. Environmental Science & Technology,2007,42(1):315-320 被引 26    
5.  Li X S. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. Energy,2011,36(3):1394-1403 被引 13    
6.  Bi Y H. Influence of volumetric-flow rate in the crystallizer on the gas-hydrate cool-storage process in a new gas-hydrate cool-storage system. Applied Energy,2004,78(1):111-121 被引 4    
7.  焦丽君. 添加剂对水合物蓄冷过程影响探讨. 科学技术与工程,2014,14(32):217-220 被引 2    
8.  Aman Z M. surfactant adsorption and interfacial tension investigations on cyclopentane hydrate. Langmuir,2013,29(8):2676-2682 被引 3    
9.  Lv Q N. Experimental investigation of the formation of cyclopentane-methane hydrate in a novel and large-size bubble column reactor. Industrial & Engineering Chemistry Research,2012,51(17):5967-5975 被引 6    
10.  Oyama H. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria,2005,234(1):131-135 被引 23    
11.  Xu C G. CO_2 (carbon dioxide) separation from CO_2-H_2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis. Energy,2013,59:719-725 被引 13    
12.  Strobel T A. Molecular hydrogen storage in binary THF-H_2 clathrate hydrates. The Journal of Physical Chemistry B,2006,110(34):17121-17125 被引 12    
13.  Li X S. Hydrate-based methane separation from the drainage coal-bed methane with tetrahydrofuran solution in the presence of sodium dodecyl sulfate. Energy & Fuels,2012,26(2):1144-1151 被引 8    
14.  Sun Z G. Natural gas storage in hydrates with the presence of promoters. Energy Conversion and Management,2003,44(17):2733-2742 被引 15    
15.  梁德青. HCFC-141b气体水合物融解热的DSC测试. 工程热物理学报,2002(s1):47-49 被引 2    
16.  Zhang Y. Differential scanning calorimetry studies of clathrate hydrate formation. The Journal of Physical Chemistry B,2004,108(43):16717-16722 被引 4    
17.  Gupta A. Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chemical Engineering Science,2008,63(24):5848-5853 被引 9    
18.  Chen Z Y. Phase equilibrium and dissociation enthalpies for cyclopentane+ methane hydrates in NaCl aqueous solutions. The Journal of Chemical & Engineering Data,2010,55(10):4444-4449 被引 5    
19.  Lv Q N. Phase equilibrium and dissociation enthalpies for hydrates of various water-insoluble organic promoters with methane. Journal of Chemical & Engineering Data,2013,58(11):3249-3253 被引 3    
20.  陈朝阳. 一种开采天然气水合物的方法及装置:101016841A,2007 被引 2    
引证文献 6

1 孟凡飞 可用于炼厂气综合利用的水合物分离技术研究进展 石油化工,2017,46(7):944-952
被引 0 次

2 潘振 多孔介质中天然气水合物生成影响因素研究进展 化工进展,2017,36(12):4403-4415
被引 6

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号