帮助 关于我们

返回检索结果

Large eddy simulation of boundary layer flow under cnoidal waves

查看参考文献33篇

文摘 Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers. Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before. Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.
来源 Acta Mechanica Sinica ,2016,32(1):22-37 【核心库】
DOI 10.1007/s10409-015-0486-6
关键词 Boundary layer structure ; Turbulence ; Large eddy simulation ; Cnoidal wave
地址

1. Institute of Mechanics, Chinese Academy of Sciences, Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Chinese Academy of Sciences, Beijing, 100190  

2. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081

语种 英文
文献类型 研究性论文
ISSN 0567-7718
学科 力学
基金 support to this work from the National Natural Science Foundation of China ;  国家973计划
文献收藏号 CSCD:5660705

参考文献 共 33 共2页

1.  Sawamoto M. Sediment transport rate due to wave action. J. Hydrosci. Hydr. Eng,1986,4:1-15 被引 4    
2.  Fredsoe J. Mechanics of Coastal Sediment Transport,1992 被引 12    
3.  Tanaka H. Experimental and numerical investigation on asymmetric oscillatory boundary layers. J. Hydrosci. Hydr. Eng,1998,16:117-126 被引 1    
4.  Tanaka H. Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion. Coast. Eng. J,1998,40:81-98 被引 3    
5.  Carstensen S. Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech,2010,646:169-206 被引 4    
6.  Gonzalez-Rodriguez D. Boundary-layer hydrodynamics and bedload sediment transport in oscillatingwater tunnels. J. Fluid Mech,2011,667:48-84 被引 1    
7.  Vittori G. Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech,1998,371:207-232 被引 6    
8.  Jensen B L. Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech,1989,206:265-297 被引 21    
9.  Sarpkaya T. Coherent structures in oscillatory boundary layers. J. Fluid Mech,1993,253:105-140 被引 2    
10.  Hino M. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech,1983,131:363-400 被引 11    
11.  Salon S. A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech,2007,570:253-296 被引 3    
12.  Costamagna P. Coherent structures in oscillatory boundary layers. J. Fluid Mech,2003,474:1-33 被引 2    
13.  Lin P. Numerical simulation of wave-induced laminar boundary layers. Coast. Eng,2008,55:400-408 被引 1    
14.  Lambkin D O. Wave period and flow asymmetry effects on transition to turbulence in relation to sediment dynamics. J. Geophys. Res,2004,109:1-10 被引 1    
15.  Lin P. A σ-coordinate three-dimensional numerical model for surface wave propagation. Int. J. Numer. Meth. Fluids,2002,38:1045-1068 被引 10    
16.  Lee S K. Laminar and turbulent bottom boundary layer induced by nonlinearwaterwaves. J.Hydraul. Eng,1999,126:631-644 被引 1    
17.  Kondo J. Operational Method,1956 被引 1    
18.  Nadaoka K. Characteristics of turbulent structure in asymmetrical oscillatory flow. Proc. Coast. Eng,1994,41:141-145 被引 1    
19.  Nadaoka K. Turbulent structure of asymmetrical oscillatory flow. Proc. Coast. Eng,1996,43:441-445 被引 1    
20.  Ribberink J S. Sheet flowand suspension of sand in oscillatory boundary layers. Coast. Eng,1995,25:205-225 被引 6    
引证文献 1

1 Lu Zongze Large-eddy simulation of the influence of a wavy lower boundary on the turbulence kinetic energy budget redistribution Journal of Oceanology and Limnology,2018,36(4):1178-1188
被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号