帮助 关于我们

返回检索结果

飞秒激光直写在玻璃内部制备多功能集成器件
Fabrication of multifunctional components in a glass chip with femtosecond laser direct writing

查看参考文献40篇

文摘 飞秒激光脉冲具有极高的峰值功率和极短的脉冲宽度, 与物质相互作用时呈现出强烈的非线性效应, 使其可以深入透明介质内部, 以超越光学衍射极限的精度对材料进行三维微加工. 除此之外, 飞秒激光三维直写技术具有高度的灵活性, 即可以在单一芯片上制备并集成多种不同功能的微纳结构. 这些特性使该技术迅速发展成为微制造领域的研究热点, 在微流体、微光学、光电子学以及光量子芯片制备与集成等领域表现出广阔的前景. 但还有一些问题限制飞秒激光直写技术的进一步发展, 比如加工通道的尺寸和长度限制、较高的加工表面粗糙度等.针对这些问题, 本文重点介绍了在玻璃中制备三维微纳流体通道以及高品质光学微腔的最新进展.
其他语种文摘 Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows multiphoton absorption to be induced in materials that are transparent to the laser wavelength. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials provides a facile route to modify the interior of transparent materials in a spatially selective manner, enabling three-dimensional (3D) fabrication and integration of multifunctional micro-/nano-structures and components in a monolithic substrate. For instance, femtosecond laser pulses have been used to write optical waveguides in both passive and active materials by locally modifying their refractive indices. In combination with wet chemical etching, femtosecond laser direct writing has also been used to fabricate microfluidic structures, including microchannels and chambers, microvalves, and micropumps. The same technique has been extended to fabricate free-space optics such as micromirrors and micro-optical lenses in glass materials. By virtue of its unique ability to build different types of functional components into a monolithic substrate, femtosecond laser direct writing offers a flexible approach to fabricate a wide variety of integrated devices and microsystems. Although femtosecond laser micromachining have indeed shown extreme flexibility for fabrication and integration of 3D multifunctional microcomponents in bulk transparent materials, several major issues still exist, such as the limited size of the microfluidic structures, the limited fabrication resolution, high surface roughness, and so on. This review focuses primarily on the recent efforts to tackle the two issues as mentioned above. By use of femtosecond laser direct writing in porous glass immersed in water followed by post-annealing, we demonstrated microfluidic channels with nearly unlimited lengths and arbitrary 3D geometries. By controlling the laser peak intensity and polarization, a single nanoplane with sub-50-nm feature size could be achieved inside porous glass based on these strategies, several functional devices and their applications have been demonstrated, including 3D passive microfluidic mixer and an integrated micro-nanofluidic system for single DNA analysis. Furthermore, we demonstrate fabrication of 3D whispering gallery microcavities with quality (Q)-factors on the level of ~1×10~6 in glass chips by femtosecond laser direct writing followed by CO_2 laser reflow.
来源 科学通报 ,2016,61(6):567-575 【核心库】
DOI 10.1360/N972015-00863
关键词 飞秒激光直写 ; 微流通道 ; 纳流通道 ; 微腔
地址

中国科学院上海光学精密机械研究所, 强场激光物理国家重点实验室, 上海, 201800

语种 中文
文献类型 研究性论文
ISSN 0023-074X
学科 电子技术、通信技术
基金 国家重大科学研究计划 ;  国家自然科学基金
文献收藏号 CSCD:5642115

参考文献 共 40 共2页

1.  Manza A. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensor Actuat B,1990,1:244-248 被引 206    
2.  Srinivasan V. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip,2004,4:310-315 被引 18    
3.  Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature,2006,442:387-393 被引 16    
4.  McDonald J. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis,2000,21:27-40 被引 2    
5.  Cohen A. An all-glass microfluidic cell for the ABEL trap: Fabrication and modeling. Proc SPIE, 5930,2005:191-198 被引 1    
6.  Mijatovic D. Technologies for nanofluidic systems: Top-down vs. bottom-up-A review. Lab Chip,2005,5:492-500 被引 12    
7.  Jo B. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst,2000,9:76-81 被引 15    
8.  Keller U. Recent developments in compact ultrafast lasers. Nature,2003,424:831-838 被引 173    
9.  Lenzner M. Femtosecond optical breakdown in dielectrics. Phys Rev Lett,1998,80:4076-4079 被引 67    
10.  Gertsvolf M. Orientation-dependent multiphoton ionization in wide band gap crystals. Phys Rev Lett,2008,101:243001 被引 4    
11.  Cheng Y. Microbiochips Monolithically Integrated with Microfluidics, Micromechanics, Photonics, and Electronics by 3D Femtosecond Laser Direct Writing,2010 被引 1    
12.  Sugioka K. Ultrafast lasers-Reliable tools for advanced materials processing. Light Sci Appl,2014,3:e149 被引 89    
13.  Davis K. Writing waveguides in glass with a femtosecond laser. Opt Lett,1996,21:1729-1731 被引 140    
14.  Glezer E. Three-dimensional optical storage inside transparent materials. Opt Lett,1996,21:2023-2015 被引 89    
15.  Marcinkevicius A. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett,2001,26:277-279 被引 21    
16.  Kiyama S. Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates. J Phys Chem C,2009,113:11560-11566 被引 10    
17.  Li Y. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett,2001,26:1912-1914 被引 20    
18.  Liao Y. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett,2010,35:3225-3227 被引 8    
19.  Vogel W. Glass Chemistry. 2nd ed,1994 被引 1    
20.  Ju Y. Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid Nanofluid,2011,11:111-117 被引 3    
引证文献 1

1 季津海 还原氧化石墨烯/Au复合微电极阵列的制备及光电特性 高等学校化学学报,2016,37(10):1826-1832
被引 2

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号