帮助 关于我们

返回检索结果

龙门山地震带坡耕地土壤侵蚀对有机碳迁移的影响
Effect of soil erosion in slope cultivated land of Longmenshan earthquake zone on lateral movement of soil organism carbon

查看参考文献34篇

苏正安 1   李艳 2 *   熊东红 3   董一帆 3   张素 3   张宝军 3  
文摘 坡耕地土壤再分布对土壤有机碳(SOC,soil organic carbon)迁移的作用机制研究已成为土壤侵蚀学研究的热点,然而目前极少有研究关注地震后生态脆弱的龙门山地震带坡耕地土壤侵蚀机理及其导致的土壤有机碳再分布规律。该研究选择龙门山地震带内(都江堰市)一块陡坡耕地和一个梯田系列,采用~(137)Cs法和野外调查,对比分析强震导致田埂垮塌和未受损情况下坡耕地土壤侵蚀空间变化特征和有机碳运移变化机理。结果表明,该区黄棕壤有效~(137)Cs背景值为1 473 Bq/m~2;坡度较小的坡式梯田内部上坡表现为侵蚀,下坡表现为沉积,同时,上部梯田的侵蚀速率高于下部梯田,但整个梯田系列净侵蚀量非常小,这表明梯田之间由于缺乏田埂的保护,水力也起着侵蚀、搬运上坡梯田土壤的作用,但是整个坡式梯田系列可以起到较好的保土作用,同时,坡式梯田内部主要以耕作侵蚀为主,是造成梯田上部坡位土壤流失严重的主要原因;陡坡耕地的地形为复合坡,由于田埂垮塌导致其土壤侵蚀速率显著高于坡式梯田系列,在整个坡面上,除了坡顶土壤侵蚀速率高之外,下坡坡度变大(曲率较大)的部位土壤侵蚀速率也非常高,同时,土壤沉积也发生在2个坡位(中下坡坡度较缓的部位和坡脚部位);在梯田系列和陡坡耕地上,SOC与土壤~(137)Cs的空间变化规律较为一致。研究结果表明,在龙门山地震带,质量较好的石埂梯田仍然发挥着较好的土壤保持效果,同时,耕作侵蚀是该区坡耕地上一种重要的土壤侵蚀形式,在制定相应的土壤保持措施时,必须充分考虑耕作侵蚀的作用,才能有效地控制土壤侵蚀,此外,该研究结果还表明采用~(137)Cs核素示踪技术可以比较科学地解释该区域的土壤侵蚀速率和SOC的空间变异规律。
其他语种文摘 Soil erosion in the sloping farmland has been recognized as a major contributor that affects soil organic carbon (SOC) stocks and dynamics. However, understanding of the influence of accelerated soil erosion (water erosion and tillage erosion) on carbon dynamics is limited. In particular, little is known on the influence of earth quake-induced erosion and deposition on SOC stocks and dynamics in terraced field systems and steep sloping farmland in Longmenshan earthquake zone, China. In this study, we assessed the spatial variation of soil erosion and lateral movement of soil organic carbon (SOC) in toposequence of stone dike terraces as well as a steep sloping farmland of Longmenshan earthquake zone, China using ~(137)Cs technique and field investigation. In this study area, effective ~(137)Cs reference value of the yellow brown soil was estimated at 1 473 Bq/m~2. Soil loss appeared over the upper parts of the slopes and deposition occurred towards the downslope boundary on each terrace, as well as soil loss at upper terraced fields and soil accumulation at lower terraced fields. Those results indicated that water erosion could transport soil from upper terrace to lower terrace due to lacking banks between two adjacent terraces. It should be noted that net soil erosion rate in the toposequence of the terraced fields was very low. Meanwhile, tillage erosion played an important role in transporting soil from upper slope positions to lower positions within a terrace. Soil erosion rates in the steep slope were higher than those in the toposequence of terraced fields. Besides water erosion, collapse of terrace resulting from earthquake and tillage erosion were also important soil erosion processes on the complex slope. In the steep sloping farmland, soil erosion rates were high at the summit and the lower slope with a high slope curvature. Soil accumulation appeared at lower slope with a low slope curvature and toe slope position. Discrete patterns of SOC inventories (mass per unit area) appeared over the whole terraced toposequence, while SOC inventories were low over the upper parts of the slopes but increased towards the downslope boundary on each terrace. For the steep slope farmland, SOC inventories were lower at the top of slope and at lower slope position with a high slope curvature. Soil organic matter inventories in the terraced filed series and steep slope farmland showed a similar pattern as the ~(137)Cs inventories. Those patterns were consistent with redistribution of SOC with soil as coupling effect of tillage erosion, water erosion and collapse due to earthquake. Those results indicated that terraced fields played an important role in soil conservation and SOC sequestration in the Longmenshan earthquake zone, China. Although different soil erosion processes were observed between the terraced field series and steep sloping farmland, severe erosion due to anthropogenic activity after the Wenchuan Earthquake significantly changed spatial variations in SOC inventories. In other words, tillage erosion was also one of the important soil erosion processes within a sloping farmland. More attention should be paid to prevention of tillage erosion in this area. Our results demonstrated that terrace with stone dike can better conserve soil in this earthquake stricken area. Soil erosion caused by tillage was one of the major soil erosions in this region for the sloped land. Soil conservation practice must be taken into a consideration in agriculture production. Our results also showed that ~(137)Cs can be used to successfully trace soil erosion and SOC dynamics in sloping farmland in the Longmenshan earthquake zone, China.
来源 农业工程学报 ,2016,32(3):118-124 【核心库】
DOI 10.11975/j.issn.1002-6819.2016.03.017
关键词 土壤 ; 有机碳 ; 侵蚀 ; ; 耕作 ; 坡式梯田 ; ~(137)Cs ; 龙门山地震带
地址

1. 绵阳师范学院, 生态安全与保护四川省重点实验室;;中国科学院山地灾害与地表过程重点实验室, 绵阳, 621000  

2. 绵阳师范学院, 生态安全与保护四川省重点实验室, 绵阳, 621000  

3. 中国科学院水利部成都山地灾害与环境研究所, 中国科学院山地灾害与地表过程重点实验室, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 1002-6819
学科 农业基础科学
基金 四川省应用基础研究计划项目 ;  国家自然科学基金 ;  生态安全与保护四川省重点实验室开放基金资助
文献收藏号 CSCD:5638361

参考文献 共 34 共2页

1.  Lal R. Soil degradation by erosion. Land Degradation and Development,2001,12(6):519-539 被引 50    
2.  Zhang J H. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology,2006,12(10):1834-1841 被引 22    
3.  VandenBygaart A J. Erosion and deposition history derived by depth-stratigraphy of Cs-137 and soil organic carbon. Soil and Tillage Research,2001,61(3/4):187-192 被引 7    
4.  Stavi I. Variability of soil physical quality in uneroded, eroded, and depositional cropland sites. Geomorphology,2011,125(1):85-91 被引 4    
5.  方华军. 坡耕地土壤有机碳再分布特征及其迁移累积平衡. 核农学报,2005,19(3):202-207 被引 8    
6.  Lal R. Soil erosion and the global carbon budget. Environment International,2003,29(4):437-450 被引 153    
7.  方华军. 土壤侵蚀对农田中土壤有机碳的影响. 地理科学进展,2004,23(2):77-87 被引 21    
8.  Walling D E. Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment,2005,344(1/2/3):159-184 被引 32    
9.  Van Oost K. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surface Processes and Landforms,2009,34(12):1625-1634 被引 5    
10.  李锐. 近60年我国土壤侵蚀科学研究进展. 中国水土保持科学,2009,7(5):1-6 被引 22    
11.  崔鹏. 5·12汶川地震诱发的山地灾害及减灾措施. 山地学报,2008,26(3):280-282 被引 115    
12.  赵芹. 汶川地震四川灾区水土流失经济损失评估及恢复对策. 四川大学学报:工程科学版,2009,41(3):289-293 被引 7    
13.  李勇. 龙门山地震带的地质背景与汶川地震的地表破裂. 工程地质学报,2009,17(1):3-18 被引 69    
14.  胡波. 汶川地震前后重灾区水土流失变化特征初步分析. 长江科学院院报,2010,27(11):62-66 被引 7    
15.  陈晓清. 5.12汶川地震重灾区水土流失初步估算. 山地学报,2009,27(1):122-127 被引 23    
16.  Rogowski A S. Movement of Caesium-137 by runoff, erosion and infiltration on the alluvial Captina silt loam. Health Physics,1965(11):1333-1340 被引 1    
17.  Van Oost K. A process-based conversion model for caesium-137 derived erosion rates on agricultural land: An integrated spatial approach. Earth Surface Processes and Landforms,2003,28(2):187-207 被引 5    
18.  Zhang Xinbao. Assessment of soil losses on cultivated land by using the Cs-137 technique in the Upper Yangtze River Basin of China. Soil and Tillage Research,2003,69(1/2):99-106 被引 8    
19.  Zheng Jinjun. Assessing Soil Erosion Rates on Manually-Tilled Hillslopes in the Sichuan Hilly Basin Using ~(137)Cs and ~(210)Pb_(ex) Measurements. Pedosphere,2007,17(3):273-283 被引 13    
20.  文安邦. 雅鲁藏布江中游地区土壤侵蚀的~(137)Cs示踪法研究. 水土保持学报,2000,14(4):47-50 被引 25    
引证文献 7

1 孙凡 汶川震区不同气候区受损植被土壤有机碳储量和碳密度分布特征 广西植物,2017,37(12):1498-1507
被引 5

2 杨超 近景摄影测量技术在坡耕地土壤侵蚀速率研究中的应用 水土保持学报,2018,32(1):121-127,134
被引 2

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号