帮助 关于我们

返回检索结果

微生物对砷的氧化还原竞争
Competitive Microbial Oxidation and Reduction of Arsenic

查看参考文献27篇

杨婷婷 1   柏耀辉 2 *   梁金松 2   霍旸 2   王明星 3   袁林江 3  
文摘 滤池被广泛运用于饮用水厂中,前期研究发现某水厂生物滤池处理含砷地下水时,一方面三价砷可被生物氧化锰氧化为五价砷,另一方面滤池系统中存在的微生物砷还原酶可促使五价砷还原为三价砷,而滤池表面存在的这种微生物竞争关系会影响滤池的稳定性及处理效率. 为探讨其内在机制,本研究选取1株锰氧化模式菌(Pseudomonas sp. QJX-1)和1株砷还原模式菌(Brevibacterium sp. LSJ-9),考察在Mn~(2+)、 As(As~(3+)、 As~(5+))共存时,两菌株对空间、 营养物质以及对砷氧化/还原的竞争关系. 结果表明,不同的反应时间,Mn、 As质量浓度/价态不同,三价及五价砷体系中,Pseudomonas sp. QJX-1生成的锰氧化物在砷的氧化还原反应中占主导地位,即能迅速氧化本身存在的As~(3+)(三价砷体系)和砷还原菌产生的As~(3+)(五价砷体系),最终两体系中砷都主要以As~(5+)的形式存在. PCR及RT-PCR结果表明,反应过程中锰氧化菌功能基因(cumA)抑制了砷还原酶(arsC)的表达,锰氧化菌16S rRNA表达量始终比砷还原菌高两个数量级,即锰氧化菌在生长竞争过程中占优势. 实验结果表明滤池的水力停留时间是决定出水中砷价态的一个重要因素.
其他语种文摘 Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As~(3+) could be oxidized to As~(5+) by biogenic manganese oxides, while As~(5+) could be reduced to As~(3+) by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn~(2+), As~(3+) or As~(5+). The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As~(3+) in the existing system and the As~(3+) generated by arsenic reductase into As~(5+). PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant.
来源 环境科学 ,2016,37(2):609-614 【核心库】
DOI 10.13227/j.hjkx.2016.02.028
关键词 砷氧化还原 ; 锰氧化 ; 微生物竞争 ; 生物滤池 ; 营养物质
地址

1. 西安建筑科技大学环境与市政工程学院, 中国科学院饮用水科学与技术重点实验室, 西安, 710055  

2. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京, 100085  

3. 西安建筑科技大学环境与市政工程学院, 西安, 710055

语种 中文
文献类型 研究性论文
ISSN 0250-3301
学科 环境科学基础理论
基金 国家环境保护公益性行业科研专项 ;  环境模拟与污染控制国家重点联合实验室(环境水质学实验室)课题
文献收藏号 CSCD:5627392

参考文献 共 27 共2页

1.  EPA. Technologies and costs for removal of arsenic from drinking water,2000 被引 1    
2.  Herbert K J. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes. Toxicology and Applied Pharmacology,2014,281(1):136-145 被引 3    
3.  吴佳. 砷污染微生物修复的进展研究. 环境科学,2011,32(3):817-824 被引 25    
4.  丁爱中. 地下水砷污染分析. 吉林大学学报(地球科学版),2007,37(2):319-325 被引 20    
5.  Wang Y X. Removal of As(Ⅲ) and As(Ⅴ) by ferric salts coagulation-Implications of particle size and zeta potential of precipitates. Separation and Purification Technology,2014,135:64-71 被引 3    
6.  Katsoyiannis I A. Application of biological processes for the removal of arsenic from groundwaters. Water Research,2004,38(1):17-26 被引 28    
7.  Katsoyiannis I A. Kinetics of bacterial As(Ⅲ)oxidation and subsequent As(Ⅴ)removal by sorption onto biogenic manganese oxides during groundwater treatment. Industrial & Engineering Chemistry Research,2004,43(2):486-493 被引 12    
8.  Bruins J H. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. Water Research,2015,69:154-161 被引 15    
9.  Han X. Abiotic oxidation of Mn(Ⅱ) and its effect on the oxidation of As(Ⅲ) in the presence of nano-hematite. Ecotoxicology,2012,21(6):1753-1760 被引 1    
10.  Watanabe J. As(Ⅲ) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2. Chemical Geology,2013,347:227-232 被引 3    
11.  Bai Y H. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system. PLoS One,2013,8(4):e61011 被引 3    
12.  Katsoyiannis I A. Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: A case study from a treatment unit in northern Greece. Desalination,2008,224(1/3):330-339 被引 4    
13.  Devi R. Removal of fluoride, arsenic and coliform bacteria by modified homemade filter media from drinking water. Bioresource Technology,2008,99(7):2269-2274 被引 7    
14.  周娜娜. Pseudomonas sp. QJX-1的锰氧化特性研究. 环境科学,2014,35(2):740-745 被引 5    
15.  Brouwers G J. CumA, a gene encoding a multicopper oxidase, is involved in Mn~(2+) oxidation in Pseudomonnas putida GB-1. Applied and Environmental Microbiology,1999,65(4):1762-1768 被引 14    
16.  Sun Y M. Identification and quantification of arsC genes in environmental samples by using real-time PCR. Journal of microbiological methods,2004,58(3):335-349 被引 6    
17.  Francis C A. CumA multicopper oxidase genes from diverse Mn(Ⅱ)-oxidizing and non-Mn(Ⅱ)-oxidizing Pseudomonas strains. Applied and Environmental Microbiology,2001,67(9):4272-4278 被引 21    
18.  Gladysheva T B. Properties of the arsenate reductase of plasmid R773. Biochemistry,1994,33(23):7288-7293 被引 5    
19.  Achour A R. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology,2007,158(2):128-137 被引 16    
20.  Francis C A. Enzymatic manganese(Ⅱ) oxidation by a marine alpha-proteobacterium. Applied and Environmental Microbiology,2001,67(9):4024-4029 被引 11    
引证文献 2

1 张明慧 氧化还原生物对石门雄黄矿区尾矿砷释放行为研究 岩石矿物学杂志,2020,39(2):203-210
被引 2

2 麻淳雅 耐砷芽孢杆菌对As~(3+)的吸附性能与机制研究 环境科学学报,2020,40(8):2758-2770
被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号