帮助 关于我们

返回检索结果

南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响
The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea

查看参考文献42篇

张辉 1 *   卢海龙 2   梁金强 3   吴能友 1 *  
文摘 天然气水合物在海底沉积物中的饱和度是对其资源评价的重要参数. 掌握水合物饱和度的影响因素对其能源和气候环境效应的评估有重要的意义. 沉积物粒度属性与水合物饱和度的关系, 几十年来仍停留在简单统计和定性认识层面. 本研究以南海神狐SH3站位样品为研究对象进行粒度、比表面积的测量, 以此为基础建立模型表征沉积孔隙大小、水合物相平衡改变量, 探讨沉积物颗粒对天然气水合物饱和度的影响及其影响机理. 实验结果显示, 水合物产出于极细粉砂层(粉砂含量>60%). 赋存水合物的地层含有极细砂以上的粗粒组分(<10%), 而其上覆和下伏不含水合物的地层不含有这一粗粒组分. 天然气水合物饱和度并非简单依赖于砂(>63 μm)的含量, 而与较粗的部分砂(>125 μm)含量统计上存在更好的相关性. 沉积颗粒的比表面积呈现较为平滑的走势, 水合物产出层位的沉积物具有较小的比表面积(8~14 m~2/g), 而不含水合物的层位其比表面积>16 m~2/g. 孔隙度一定的前提下, 沉积孔隙的大小主要由沉积颗粒的比表面积决定, 且两者呈反比关系. 沉积物颗粒的比表面积比其粒度更有优势, 与水合物饱和度呈现良好的相关性, 可用以定量化分析沉积孔隙大小、天然气水合物相平衡条件的改变, 是研究沉积物颗粒影响天然气水合物分布有效且经济的参数指标, 同时也还需要大量实验的验证或改进.
其他语种文摘 An important parameter is the saturation of gas hydrate within the sediment pore for evaluating its impact on energy, climate and environment. So it is significant of understanding which factors affecting the saturation of gas hydrates. There is a good relationship between the gas hdyrate saturation and the sediment granulometric charateristics by previous investigations. Gas hydrates with high saturation are retrieved usually from the turbidite, sand layers, which formations are of coarse particles and relatively larger pore space. But the knowledge up to today is still on the level of simple statistic and qualitative. In this paper, the samples from site SH3, Shenhu, South China Sea, are undergone the grain size & specific surface area (SSA) measurements. Then a mathematical model is built to depict that the SSA characterizing the pore size and the change of gas hydrates phase equilibruim condition. Thus, the scientific question, how the sediment grains affecting the gas hydrates saturation, can be analysed and discussed quantitatively. The experiment results show that, the sediment layers which are not bearing gas hydrates, consist of clay(<4 μm), silt (4–63 μm) and the very fine sand (63–125 μm). The major components of silt (4–63 μm) contribute to 80%, while the content of clay is almost 20%. The gas hydrate occurrence zone (GHOZ) is constrained by the fine silt layers (silt content>60%). The sediment layer of GHOZ contains the most coarsest grains (>125 μm, content<10%) of sand except for the very fine sand (63–125 μm), while the layers up & below GHOZ do not contain the coarsest parts. The gas hydrate saturation does not depend simply on the sand (>63 μm) content. There is a more better correlation between hydrate saturation and the sand content except for the very fine sand (>125 μm). This is by now the most elaborate report of the relationship between gas hydrates saturation and sediment grain size characterization. The SSA of sediment grains appears to be a smooth trend with small values of 8–14 m~2/g at the interval of the GHOZ and more than 16 m~2/g out of the GHOZ, respectively. The sediment pore space is inversely proportional to the parameter of SSA. The proxy of SSA has advantages over the sediment grain size distribution when comparing the correlation of which and gas hydrates saturation. If the proxy of SSA is employed, (1) it is discarded that the complex depictions of sediment granulometric contributions affect the distribution of gas hydrates; (2) the SSA reflects the coarseness of sediment grain, and can be used for quantifying the sediment pore scale and the condition change of hydrate phase transition. It is subsequently easy to research how the sediment lithologies influence the hydrate saturation in microscale and its distribution in macroscale. (3) The parameter of SSA is measured easily and economically compared to other methods. The results and concolusions in this paper call for more investigations to validate or improvement.
来源 科学通报 ,2016,61(3):388-397 【核心库】
DOI 10.1360/N972014-01395
关键词 天然气水合物饱和度 ; 沉积物粒度 ; 比表面积 ; 南海
地址

1. 中国科学院广州能源研究所, 中国科学院天然气水合物重点实验室, 广州, 510640  

2. 北京大学工学院能源与资源工程系, 北京, 100871  

3. 广州海洋地质调查局, 广州, 510075

语种 中文
文献类型 研究性论文
ISSN 0023-074X
学科 地质学
基金 中国科学院重点部署项目 ;  国土资源部中国地质调查局地质调查项目 ;  中国科学院国家外国专家局创新团队国际合作伙伴计划 ;  广东省博士启动项目 ;  中国科学院广州能源研究所所长基金
文献收藏号 CSCD:5627064

参考文献 共 42 共3页

1.  Maslin M. Gas hydrates: Past and future geohazard?. Philos Trans R Soc London, Ser A: Math Phys Eng Sci,2010,368:2369-2393 被引 30    
2.  Boswell R. Is gas hydrate energy within reach?. Science,2009,325:957-958 被引 29    
3.  Maslin M. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis. Geology,2004,32:53-56 被引 38    
4.  Talling P J. Large submarine landslides on continental slopes geohazards, methane release, and climate change. Oceanography,2014,27:32-45 被引 8    
5.  O'Hara K D. A model for late quaternary methane ice core signals: Wetlands versus a shallow marine source. Geophys Res Lett,2008,35:L02712 被引 2    
6.  Gu G. Abundant early Palaeogene marine gas hydrates despite warm deep-ocean temperatures. Nat Geosci,2011,4:848-851 被引 3    
7.  Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Paleogeogr Paleoclimatol Paleoecol,2006,232:362-407 被引 62    
8.  Uchida T. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. J Geophys Res,2004,109:B05206 被引 21    
9.  Ginsburg G D. Methane migration within the submarine gas-hydrate stability zone under deep-water conditions. Mar Geol,1997,137:49-57 被引 22    
10.  王家生. 沉积物粒度对水合物形成的制约:来自IODP 311航次证据. 地球科学进展,2007,22:659-665 被引 14    
11.  Su X. Relationship between sediment granulometry and the presence of gas hydrate on hydrate ridge. Proc ODP, Sci Results. 204,2006:1-30 被引 1    
12.  Lu H. Particle size effect on the saturation of methane hydrate in sediments-Constrained from experimental results. Mar Petrol Geol,2011,28:1801-1805 被引 4    
13.  Ginsburg G. Sediment grain-size control on gas hydrate presence, sites 994, 995, and 997. Proc ODP, Sci Results,2000:237-245 被引 1    
14.  Trehu A M. Three-dimensional distribution of gas hydrate beneath southern hydrate ridge: Constraints from ODP leg 204. Earth Planet Sci Lett,2004,222:845-862 被引 35    
15.  Torres M E. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP expedition 311. Earth Planet Sci Lett,2008,271:170-180 被引 15    
16.  Behseresht J. Sedimentological control on saturation distribution in arctic gas-hydrate-bearing sands. Earth Planet Sci Lett,2012,341/344:114-127 被引 4    
17.  Dallimore S R. Intrapermafrost gas hydrates from a deep core-hole in the Mackenzie delta, northwest-territories, Canada. Geology,1995,23:527-530 被引 21    
18.  Bahk J J. Gas hydrate occurrences and their relation to host sediment properties: Results from second Ulleung Basin gas hydrate drilling expedition, East Sea. Mar Petrol Geol,2013,47:21-29 被引 20    
19.  Lee J Y. Physical properties of sediments from the Ulleung Basin, East Sea: Results from second Ulleung Basin gas hydrate drilling expedition, East Sea (Korea). Mar Petrol Geol,2013,47:43-55 被引 7    
20.  Boswell R. Subsurface gas hydrates in the northern gulf of Mexico. Mar Petrol Geol,2012,34:4-30 被引 39    
引证文献 23

1 邬黛黛 南海北部神狐海域水合物钻探区沉积物地球化学特征 海洋地质与第四纪地质,2017,37(6):100-109
被引 1

2 刘平 琼东南盆地南部隆起带天然气水合物赋存特征分析 沉积与特提斯地质,2017,37(1):73-78
被引 3

显示所有23篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号