帮助 关于我们

返回检索结果

遥感反演蒸散发时间尺度拓展方法研究进展
Review of temporal scale expansion for evapotranspiration retrieved by remote sensing data

查看参考文献79篇

文摘 区域尺度蒸散发的精确估算对农业生态系统和水文循环至关重要。由于地表空间异质性,传统点上测量和反演方法只能代表有限站点周围区域的蒸散发情况,遥感能够克服传统蒸散发的空间尺度拓展问题。由于遥感只能提供卫星过境时刻的瞬时值,根据其反演的蒸散发是瞬时蒸散发,现实生产活动中通常需要更长时间尺度的蒸散发值。围绕如何解决遥感反演蒸散发时间尺度拓展问题,该文系统介绍了遥感反演蒸散发时间尺度拓展方法,总结了每种方法的基本原理、优缺点、适用性和误差来源,对比了不同时间尺度拓展方法估算精度,并给出选取合适时间尺度拓展方法的可量化意见,简要分析了遥感反演蒸散发模型应用中的地表参数、时间尺度拓展方法本身算法、方法验证及适用性的不确定性,最后对遥感反演蒸散发时间尺度拓展方法的发展趋势进行了探讨。
其他语种文摘 The accurate estimation of evapotranspiration (ET) at regional scale is vital for agricultural ecosystem and hydrologic cycle. Remote sensing can overcome the limitation of spatial scale from traditional ET measurement and inversion approaches. However, remote sensing only obtains the instantaneous ET estimates at the overpassing time of satellite. In the practical application, temporal upscaling of instantaneous ET to daily or longer temporal scale is required. This study reviewed the methods for the temporal upscaling of ET, compared the applicability of different methods, gave quantifiable advice on how to choose the different methods, and assessed the uncertainties from model itself, model parameterization, along with model evaluation. Future research should address the following issues: 1) The precision of remote sensing for obtaining surface parameters needs to be further improved. Land surface temperature, surface albedo, emissivity, normalized difference vegetation index (NDVI), fractional vegetation cover, soil moisture and leaf area index (LAI) have significant impact on the partition of the 4 energy components in the energy balance models and consequently on the accuracy of the retrieval regional ET. More attention should be paid to the physical interpretation of these surface variables, and understanding the mechanism of remote sensing radiative transfer needs to deepen. 2) Now, more than 2000 terrestrial flux stations have been established all over the world, which almost cover the major ecosystem types of the world. However, the comparative research on existing methods of temporal scale expansion is less. Therefore, relying on the existing field data of long-term ground observation stations, further comparison of the applicability between different temporal upscaling methods is definitely required in different climate zones and crop types, which can provide reference on how to select the appropriate temporal scale expansion method based on the characteristics of study area. 3) The temporal upscaling method of remote sensing ET has its own advantages, disadvantages and suitable conditions, and hence it needs to be further improved and perfected. For example, although the constant reference evaporative fraction method has higher estimation precision than other methods, a variable canopy resistance would be introduced for the reference grass instead of using the fixed value. 4) In the future, we can introduce hyperspectral data to improve the accuracy of surface temperature inversion, use microwave data which is less affected by weather to estimate the ET of rainy days, and combine new technology and method such as large aperture scintillation detector (LAS) to carry out satellite-aircraft-ground simultaneous observation experiment; and integrated use of multi-source, multi-scale remote sensing data to expand temporal scale of ET based on the characteristics of study area, is a breakthrough for future research. 5) Based on data assimilation methods, land surface process and atmospheric general circulation model, relying on the existing field data of long-term ground observation stations, the land surface data assimilation system of ET can be constructed, which can integrate multi-source/scale direct and indirect observations data. Achieving dynamic monitoring and forecasting of ET in agro-ecosystem is one of the future trends.
来源 农业工程学报 ,2015,31(24):162-173 【核心库】
DOI 10.11975/j.issn.1002-6819.2015.24.025
关键词 遥感 ; 蒸散发 ; 不确定性分析 ; 时间尺度 ; 拓展方法
地址

中国科学院水利部成都山地灾害与环境研究所, 成都, 610041

语种 中文
文献类型 综述型
ISSN 1002-6819
学科 农业基础科学;自动化技术、计算机技术
基金 中国科学院国际合作重点部署项目 ;  国家自然科学基金项目 ;  中国科学院战略性先导科技专项 ;  国际合作创新团队项目 ;  中国科学院西部之光人才培养计划
文献收藏号 CSCD:5592561

参考文献 共 79 共4页

1.  Li Zhaoliang. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors,2009,9(5):3801-3853 被引 69    
2.  刘绍民. 蒸散量测定与估算方法的对比研究. 自然资源学报,2003,18(2):161-167 被引 50    
3.  孙鸿烈. 国际重大研究计划与中国生态系统研究展望——中国生态大讲堂百期学术演讲暨2014年春季研讨会评述. 地理科学进展,2014,33(7):865-873 被引 6    
4.  李新. 黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展,2012,27(5):481-498 被引 100    
5.  冯景泽. 遥感蒸散发模型研究进展综述. 水利学报,2012,43(8):914-925 被引 27    
6.  Jackson R D. Wheat canopy temperature: A practical tool for evaluating water require-ments. Water Resources Research,1977,13(3):651-656 被引 75    
7.  Seguin B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote Sensing,1983,4(2):371-383 被引 41    
8.  Lagouarde J P. Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature. Boundary Layer Meteorology,1992,59(4):341-362 被引 3    
9.  Carlson T N. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment,1995,54(2):161-167 被引 40    
10.  Rivas R. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment,2004,93(1):68-76 被引 6    
11.  Jackson R D. Estimation of daily evapotranspiration from one time-of-day measurements. Agricultural Water Management,1983,7(1):351-362 被引 27    
12.  谢贤群. 遥感瞬时作物表面温度估算农田全日蒸散总量. 环境遥感,1991,6(4):253-260 被引 45    
13.  Zhang Lu. Evaluation of daily evapotranspiration estimates from instantaneous measurements. Agricultural and Forest Meteorology,1995,74(1):139-154 被引 24    
14.  Kustas W P. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal,1996,41(4):495-516 被引 29    
15.  Colaizzi P D. Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements. Transactions of the American Society of Agricultural and Biological Engineers,2006,49(5):1409-1417 被引 12    
16.  张仁华. 定量热红外遥感模型及地面实验基础,2009 被引 27    
17.  Shuttleworth W. FIFE: The variation in energy partition at surface flux sites. IAHS Publication,1989,186:67-74 被引 2    
18.  Brutsaert W. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. Journal of Geophysical Research: Atmospheres (1984-2012),1992,97(D17):18377-18382 被引 16    
19.  Gurney R J. Relating evaporative fraction to remotely sensed data at the FIFE site. Symposium on FIFE-First ISLSCP Field Experiment,1990:112-116 被引 1    
20.  Sugita M. Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resources Research,1991,27(5):747-752 被引 16    
引证文献 11

1 李爱农 若尔盖高原区域碳收支参量多尺度遥感综合观测试验:科学目标与试验设计 遥感技术与应用,2016,31(3):405-416
被引 2

2 田宏武 大田农业节水物联网技术应用现状与发展趋势 农业工程学报,2016,32(21):1-12
被引 5

显示所有11篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号