帮助 关于我们

返回检索结果

植物对卤代有机污染物吸收、迁移和代谢的研究进展
Absorption, Translocation and Metabolism of Halogenated Organic Pollutants (HOPs) in Plants: A Review

查看参考文献75篇

莫凌 1   张云 2   林彰文 1   邢巧 1   吴江平 3   罗孝俊 3 *   麦碧娴 3  
文摘 卤代有机污染物(Halogenated organic pollutants,HOPs)在环境中具有持久性、长距离迁移性、生物积累性和潜在的生物毒性等特点,HOPs 所引起的环境问题已成为全球环境科学研究热点。植物是环境介质中各种污染物的重要存储体,也是各类污染物进入陆生食物链的重要途径。研究植物对HOPs的吸收、传输与转化特征,对明确HOPs的环境行为、生态风险评价及植物修复等都具有重要的意义。文章在总结了近年来国内外关于植物对HOPs 累积研究的基础上,综述了植物对大气、土壤和水体中HOPs的吸收和传输特征、HOPs 在植物体内的迁移特征和代谢转化途径,分析了影响HOPs 在植物中的积累、传递、降解与转化行为的主要因素。研究表明,辛醇-空气分配系数(Octanol-air partition coefficient,K_(OA))和辛醇-水分配系数(Octanol-water partition coefficient,Kow)是影响植物吸收HOPs的关键因素,当化合物的log Kow 值在6~8的范围内时,植物根系对HOPs的根系富集因子(Root concentration factors,RCFs)较高;植物体内的脂质含量、化合物的理化性质和环境介质的差异是影响HOPs 在植物体内传输的重要因素;脱卤代原子是植物降解HOPs的主要途径,而甲氧基化和羟基化是HOPs 在植物体内转化的主要模式,具有还原脱卤酶基因的土壤细菌和植物体内的硝酸还原酶(NaR)与谷胱甘肽硫转移酶(GST)能有效促进植物对HOPs的降解代谢。这些研究虽然都取得了一定的进展,但关于植物对HOPs 积累迁移与代谢转化的研究仍处于起步阶段,文章就新型HOPs 在植物体内积累、传输与代谢机制及采用植物修复技术降低HOPs的环境毒性等方面进行了讨论和展望。
其他语种文摘 The environmental risks of halogenated organic pollutants (HOPs) have attracted considerable research interest due to their persistence, long range transport, bioaccumulation, and toxicity. Plants are important reservoirs of pollutants in environment and play key role in trapping and transferring airborne pollutants to terrestrial ecosystems. Research on the bioaccumulation, translocation, and transformation of HOPs in plant is critically important to understand the behavior, evaluate the potential risks to ecological system, and phytoremediation of HOPs. This review summarized the recent data on the absorption and bioaccumulation of HOPs in plants. The absorption and translocation behaviors of HOPs from the atmosphere, soil, and water to the plants, and the metabolism and transformation of HOPs in plants were also reviewed. The key factors affected the bioaccumulation, translocation, degradation and transformation of HOPs in plants were discussed. Results of research showed that the key factors affected the bioaccumulation of HOPs in plants were octanol-air partition coefficient (K~(OA)) and octanol-water partition coefficient (Kow). The values of root concentration factors (RCFs) were higher when the values of log Kow of compounds ranged from 6 to 8. The lipid content in plants, physicochemical property of compounds, and environmental media were the important factors affected the translocation of HOPs in plants. Dehalogenation was the primary degradation pathway of HOPs in plants, and methoxylation and hydroxylation are two major transformation ways. The soil bacteria with the genes of dehalogenation reductase, nitrate reductase (NaR) and glutathione S-transferases (GST) could effectively promote degradation and metabolism of HOPs in plants. Although these studies have made some progress, the research on the bioaccumulation, translocation, degradation and transformation of HOPs in plants were still in their infancy. The mechanism of bioaccumulation, translocation, and metabolism of new HOPs in plants and the phytoremediation technology applied on the decreasing of environmental toxicity of HOPs were discussed and prospected.
来源 生态环境学报 ,2015,24(9):1582-1590 【核心库】
DOI 10.16258/j.cnki.1674-5906.2015.09.024
关键词 卤代有机污染物 ; 植物 ; 吸收 ; 迁移 ; 代谢
地址

1. 海南省环境科学研究院, 海南, 海口, 570100  

2. 华南师范大学, 广东, 广州, 510631  

3. 中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640

语种 中文
文献类型 综述型
ISSN 1674-5906
学科 环境科学基础理论
基金 海南省自然科学基金 ;  国家自然科学基金项目
文献收藏号 CSCD:5565581

参考文献 共 75 共4页

1.  Aken B V. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environmental Science & Technology,2010,44(8):2767-2776 被引 19    
2.  Barber J L. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants. Environmental Science & Technology,2002,36(20):4282-4287 被引 12    
3.  Barber J L. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science & Technology,2002,36(15):3224-3229 被引 9    
4.  Barber J L. Study of plant-air transfer of PCBs from an evergreen shrub: Implications for mechanisms and modeling. Environmental Science & Technology,2003,37(17):3838-3844 被引 12    
5.  Barber J L. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution,2004,128(2):99-138 被引 19    
6.  Chen S J. Dechlorane plus (DP) in air and plants at an electronic waste (e-waste) site in South China. Environmental Pollution,2011,159(5):1290-1296 被引 12    
7.  Chroma L. Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnologica,2002,22(1):35-41 被引 7    
8.  Collins C. Plant uptake of non-ionic organic chemicals. Environmental Science & Technology,2006,40(1):45-52 被引 59    
9.  Cousins I T. Strategies for including vegetation compartments in multimedia models. Chemosphere,2001,44(4):643-654 被引 6    
10.  Covaci A. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environmental Science & Technology,2006,40(12):3679-3688 被引 64    
11.  Covaci A. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environment International,2011,37(2):532-556 被引 74    
12.  Covaci A. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. Journal of Chromatography A,2009,1216(3):346-363 被引 31    
13.  De Wit C A. Brominated flame retardants in the arctic environment-trends and new candidates. Science of The Total Environment,2010,408(15):2885-2918 被引 45    
14.  Desborough J. Chiral signatures show volatilization from soil contributes to polychlorinated biphenyls in grass. Environmental Science & Technology,2011,45(17):7354-7357 被引 2    
15.  Gouin T. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls. Environmental Science & Technology,2002,36(7):1426-1434 被引 12    
16.  Hu J C. Levels of polybrominated diphenyl ethers and hexabromocyclododecane in the atmosphere and tree bark from Beijing, China. Chemosphere,2011,84(3):355-360 被引 14    
17.  Huang H L. Behavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil. Environmental Science & Technology,2010,44(2):663-667 被引 17    
18.  Huang H L. Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environmental Pollution,2011,159(1):238-243 被引 19    
19.  Huang H L. In vitro biotransformation of PBDEs by root crude enzyme extracts: potential role of nitrate reductase (NaR) and glutathione S-transferase (GST) in their debromination. Chemosphere,2013,90(6):1885-1892 被引 8    
20.  Inui H. A major latex-Like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiology,2013,161(4):2128-2135 被引 2    
引证文献 4

1 金光球 平原河流水沙界面生源物质迁移转化过程及水环境调控的研究进展 水科学进展,2019,30(3):434-444
被引 6

2 屈佳 有序介孔碳的模板化构筑及其水处理应用研究 精细化工,2020,37(12):2435-2446
被引 1

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号