帮助 关于我们

返回检索结果

利用瑞利激光雷达观测北京地区上平流层地形重力波活动
Terrain-generated gravity waves in the upper stratosphere detected by Rayleigh lidar

查看参考文献16篇

文摘 本文利用中国科学院空间科学与应用研究中心的瑞利激光雷达首次观测到了平流层地形重力波活动的现象,并结合美国国家环境预报中心(NCEP)的全球预报系统(GFS)的风场数据分析了该地形重力波的基本参数.与惯性重力波相比较,地形重力波的密度扰动没有下传的相位,在同一高度上,其扰动相位保持不变.北京空间科学与应用研究中心瑞利激光雷达自2012年开始观测实验以来,已经观测到多起地形重力波活动事件.本文以2013年11月11日的观测数据为例,研究北京上空的地形重力波活动,并结合GFS风场数据分析了北京上平流层地形重力波的波长、传播方向、传播速度等参量.通过分析得到在2013年11月11日北京上空存在一列传播方向为北偏西52.4°,水平波长为5.5km,平均垂直波长约为6.0km的地形重力波.
其他语种文摘 Gravity wave activity in the upper stratosphere is investigated using density data retrieved from the Rayleigh lidar of National Space Science Center,Chinese Academy of Sciences. Combining the Rayleigh lidar data with the wind data of National Centers for Environmental Prediction(NCEP)Global Forecast System (GFS),we study a mountain wave observed on November 11,2013.The parameters of this mountain wave,such as propagation direction and propagation speed,have been calculated. Gravity wave perturbations are extracted from 0.5h×1km density profiles.The relative density perturbations are expressed byρ′(z)= (ρ(z)-ρ0(z))/ρ0(z),whereρ(z)is the measured atmosphere density,and ρ_0(z) is the background density which is calculated by fitting the logarithmic form of whole night mean density with 4 order polynomial.The background wind data are achieved by applying a linear polynomial fitting to the NCEP-GFS wind data between 20 to 48km altitude.Using the data extracted from the complete density perturbations structure and the background wind data,we calculate the parameters of gravity waves observed on November 11,2013 by the gravity wave dispersion equation. The complete density perturbation structure shows an obvious phenomenon of mountain gravity wave activity.The wave phases at same altitude remain unchanged in the whole night. The perturbation structure shows that vertical wavelength is about 5.5km but changes with altitude.A group of over-determined equations can be established by substituting the data extracted from the complete density perturbations structure and the background wind data into the gravity wave dispersion equation.And two groups of solutions are obtained by using the least squares method to solve these over-determined equations.The wind profiles in the direction of two sets of solutions have been analyzed.A critical layer(zero wind layer)which will prevent the upward propagation of mounting waves is found in the wind profile in the direction of 37.9°(or 217.9°).Finally,the gravity waves observed on November 11,2013 propagate in the direction of 52.4°from the north to the west,with a horizontal wavelength of 5.5km. Compared with inertia waves,there is no downward-propagating or upward-propagating phase in the density perturbation structure.At the same altitude,the phase remains unchanged in the whole night.Such kind of gravity wave perturbation structures have been often observed in winter.Density data obtained by Rayleigh lidar and NCEP-GFS wind data at Beijing are used to analyze a mountain wave parameters observed on November 11,2013.By analysis,we obtain terrain-generated gravity waves propagating in the direction of 52.4° from the north to the west, with a horizontal wavelength of 5.5km and average vertical wavelength of 6.0km.
来源 地球物理学报 ,2015,58(10):3481-3486 【核心库】
DOI 10.6038/cjg20151004
关键词 瑞利激光雷达 ; 地形重力波 ; 山地波
地址

中国科学院空间科学与应用研究中心, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0001-5733
学科 大气科学(气象学)
基金 国家自然科学基金 ;  中国科学院科研装备研制项目
文献收藏号 CSCD:5559736

参考文献 共 16 共1页

1.  Alexander M J. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J.Geophys.Res,2007,112(D21) 被引 6    
2.  Alexander S P. The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. Journal of Geophysical Research:Atmospheres,2011,116(D6):D06109 被引 1    
3.  Alexander S P. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis,Antarctica (69°S,78°E). J.Geophys.Res,2011,116(D13) 被引 8    
4.  Collins R L. Gravity wave activity in the upper mesosphere over Urbana,Illinois:lidar observations and analysis of gravity wave propagation models. Journal of Atmospheric & Terrestrial Physics,1996,58(16):1905-1926 被引 2    
5.  Eckermann S D. Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. J.Geophys. Res,1995,100(D7):14097-14112 被引 2    
6.  Eckermann S D. Satellite detection of orographic gravity-wave activity in the winter subtropical stratosphere over Australia and Africa. Geophysical Research Letters,2012,39(21) 被引 1    
7.  Fritts D C. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics,2003,41(1) 被引 86    
8.  Gao X. Rayleigh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over the Rocky Mountain region. J. Geophys.Res,1998,103(D6):6405-6416 被引 2    
9.  Hertzog A. Measurements of gravity wave activity in the lower stratosphere by Doppler lidar. Journal of Geophysical Research:Atmospheres,2001,106(D8):7879-7890 被引 4    
10.  Jiang J H. UARS MLS observations of gravity waves associated with the Arctic winter stratospheric vortex. Geophysical Research Letters,2001,28(3):527-530 被引 1    
11.  Li T. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory,Hawaii. Journal of Geophysical Research:Atmospheres,2010,115(D13):D13103 被引 6    
12.  Marsh A K P. Lidar studies of stratospheric gravity-wave spectra. Planetary &Space Science,1991,39(11):1541-1548 被引 3    
13.  Sivakumar V. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site(Gadanki,13.5°N,79.2°E). Annales Geophysicae,2006,24(3):823-834 被引 1    
14.  Whiteway J A. Lidar observations of gravity wave activity in the upper stratosphere over Toronto. Journal of Geophysical Research:Atmospheres,1995,100(D7):14113-14124 被引 7    
15.  Wilson R. Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies.J. Geophys.Res,1991,96(D3):5153-5167 被引 5    
16.  陈操. 中层大气重力波的瑞利激光雷达初步研究[硕士论文],2010 被引 2    
引证文献 5

1 郭文杰 北京地区大气温度及重力波活动的季节变化 空间科学学报,2017,37(2):177-184
被引 2

2 杨钧烽 中国廊坊中间层和低热层大气平均风观测模拟 空间科学学报,2017,37(3):284-290
被引 2

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号