帮助 关于我们

返回检索结果

湖南锡田钨锡多金属矿床流体包裹体研究
Fluid inclusion studies of Xintian tin-tungsten polymetallic deposit in Hunan Province

查看参考文献63篇

刘曼 1   邱华宁 1 *   白秀娟 2   肖明 1   何立言 1  
文摘 锡田钨锡多金属矿床是南岭钨锡成矿带的重要组成部分。文章主要针对石英脉型钨锡矿和云英岩型钨矿中的石英流体包裹体进行了显微测温和激光拉曼光谱分析,流体包裹体分为4类:富液相两相水溶液包裹体(L型)、富气相两相水溶液包裹体(V型)、V_(co_2)-L_(co_2)-L_(H_2o)三相包裹体(C型)和含子晶三相包裹体(S型)。石英脉型钨锡矿均一温度为240~440℃,w(NaCl_(eq))为1.4%~9.5%,云英岩型钨矿均一温度为370~470℃;且富锡石样品均一温度(t_h: 310~420℃,w(NaCl_(eq))为4.3%~9.5%)略高于富黑钨矿样品(t_h: 240~340℃,w(NaC_(eq))为1.4% ~ 7.7%)。流体包裹体气相成分主要为CO_2、CH_4、N_2。结合流体包裹体显微测温、激光拉曼光谱分析结果和野外矿床地质特征,探讨了成矿流体中N2、CH_4的源区、W和Sn的赋存状态以及其成矿机制。W以一系列钨酸、钨酸根离子、碱金属钨酸盐赋存于流体中,Sn主要赋存状态为Sn(+2价)-C1络合物。石英脉型钨锡矿因流体上升至花岗岩体或围岩的构造裂隙中,成矿流体与围岩相互反应以及与地壳流体与大气水混合,其p.t急剧下降以及流体pH值变化,导致黑钨矿沉淀,成矿流体从还原环境转为氧化环境致使锡石沉淀成矿。云英岩型钨矿有效成矿机制是流体沸腾或不混溶。
其他语种文摘 The Xitian tin-tungsten polymetallic deposit is an important deposit in the Naling metallogenic belt. In this study, the authors analyzed the fluid inclusions in quartz and fluorites from the tin-tungsten quartz veins and wolframite-bearing greisen orebodies by using such techniques as microthermometry and laser Raman spectroscopy. Fluid inclusions can be mainly divided into four types:① liquid-rich two-phase aqueous inclusions (Type L);② gas-rich two-phase aqueous inclusions (Type V);③ CO_2-bearing three-phase inclusions (Type C) and ④ daughter-mineral-bearing three-phase inclusions (Type S). Microthermometric analyses indicate that the homogenization temperatures of quartz-vein type tungsten-tin ore vary from 240 to 440℃, and those of the greisen type wolframite ore from 370 to 470℃. The laser Raman analyses show that the main gas components of the ore-forming fluids consist of CO_2,CH_4, N_2. Based on these data, the authors probed into the source region of N_2, CH_4 and the modes of occurrence of W and Sn in the ore-forming fluids, and discussed the metallogenic mechanism. Tungsten transport in ore-forming solutions occurred in the forms of tungstate ions, sodium tungstate, tungstic acid, or heteronuclear acid. However, tin transport was affected by a complex series of stannous chloride-bearing species (Sn(+ 2)-Cl). Ore-forming fluid moved upward into structural fractures in granitic masses or wall rocks due to the interaction of the ore-forming fluid with wall rocks and the mixture of crust-derived fluids or meteoric water, and then the pressure and temperature of ore-forming fluid sharply decreased, accompanied by the change of pH values, which led to the formation of quartz-vein type tungsten-tin deposits. Effective metallogenic mechanism of greisen-type tungsten deposits might be fluid boiling or fluid immiscibility.
来源 矿床地质 ,2015,34(5):981-998 【核心库】
DOI 10.16111/j.0258-7106.2015.05.008
关键词 地球化学 ; 流体包裹体 ; 显微测温 ; 激光拉曼光谱分析 ; 石英脉型钨锡矿 ; 云英岩型钨矿 ; 锡田钨锡多金属矿床
地址

1. 中国科学院广州地球化学研究所, 广东, 广州, 510640  

2. 中国地质大学(武汉), 湖北, 武汉, 430074

语种 中文
文献类型 研究性论文
ISSN 0258-7106
学科 地质学
基金 国家973计划 ;  国家自然科学基金创新研究群体项目
文献收藏号 CSCD:5539932

参考文献 共 63 共4页

1.  Barsukov V L. Evolution of composition of hydrothermal solutions in the formation of tin ore deposits. Geochem Internat,1973,10:363-375 被引 2    
2.  Barsukov V L. Oxygen fugacity and tin behavior in metals and fluids. Geology,1987,38:723-733 被引 1    
3.  Bell K G. Native bitumens associated with oil shales. Organic Geochemistry,1963:333-366 被引 1    
4.  Bernard A. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids. Applied Geochemistry,1990,5(3):317-326 被引 22    
5.  Burnham С W. Late-stage processes of felsic magmatism. Society of Mining Geologists of Japan,1980,8:1-11 被引 1    
6.  Campbell A R. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's mount and cligga head, Cornwall, England. Geochimica et Cosmochimica Acta,1990,54(3):673-681 被引 36    
7.  Candela P A. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Econ. Geol,1990,85(3):633-640 被引 29    
8.  Cattalani S. C-O-H-N fluid evolution at saint-robert, quebec: Implications for W-Bi-Ag mineral deposition. Canadian Mineralogist,1991,29(3):435-452 被引 8    
9.  Collins P L F. Gas hydrates in CO_2-bearing fluids and the use of freezing data for estimation of salinity. Econ. Geol,1979,74:1435-1444 被引 168    
10.  Eugster H P. Granites and hydrothermal ore deposits: A geochemical framework. Mineralogical Magazine,1985,49:7-23 被引 8    
11.  Gibert F. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contributions to Mineralogy and Petrology,1992,112:371-384 被引 7    
12.  Giggenbach W F. Geothermal mineral equilibria. Geochimica et Cosmochimica Acta,1981,45(3):393-410 被引 5    
13.  Giuliani G. Les concentrations filoniennes a 'tungste'ne-etain dumassif granitique des Zae" r (Maroc Central): Mine ralisations et phases fluides associe'es. Mineraium Deposita,1984,19:193-201 被引 1    
14.  Graupner T. Fluid regime and ore formation in the tungsten (-yttrium) deposits of Kyzyltau (Mongolian Altai) evidence for fluid variability in tungsten-tin ore systems. Chemical Geology,1999,154:21-58 被引 16    
15.  Hall D L. Freezing point depression of NaCl-KCl-H_2O solutions. Econ. Geol,1988,83:197-202 被引 443    
16.  Hedenquist J W. The importance of CO_2 on freezing point measurements of fluid inclusions: Evidence from active geothermal systems, and implications for epithermal ore deposition. Econ. Geol,1985,80:1379-1406 被引 30    
17.  Hemerich С A. The chemistry of hydrothermal tin (-tungsten) ore deposition. Econ. Geol,1990,85:457-481 被引 71    
18.  Higgins N C. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Earth Science,1980,17:823-830 被引 26    
19.  Higgins N C. Wolframite deposition in a hydrothermal vein system: The Grey River tungsten prospect, Newfoundland, Canada. Econ. Geol,1985,80:1297-1327 被引 9    
20.  Higgins N C. Moderately depleted oxygen isotope composition of waters associated with tin-and tungsten-bearing quartz veins: An evaluation of isotopic models. Conference on stable isotopes and fluid processes in mineralization, Queensland,1985:204-214 被引 1    
引证文献 6

1 郭理想 内蒙古维拉斯托锡多金属矿流体包裹体特征 地学前缘,2018,25(1):168-181
被引 2

2 刘飚 湖南锡田钨锡多金属矿田成矿分带样式及机理 中南大学学报. 自然科学版,2018,49(3):633-641
被引 3

显示所有6篇文献

论文科学数据集

1. 湘东北横洞钴矿床白垩纪时期流体包裹体数据

2. 安徽铜陵杨冲里金矿流体包裹体和氢氧同位素地球化学数据

3. 湖南东北部万古-黄金洞金矿区流体包裹体地球化学数据(2020)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号