帮助 关于我们

返回检索结果

基于EMT采用FEM研究含裂纹介质中弹性波传播机制
Wave propagation in cracked elastic media based on EMT using FEM

查看参考文献20篇

刘宁 1   李敏 1 *   陈伟民 2  
文摘 了解和掌握弹性波在含有裂纹介质中的传播规律是开发利用页岩气等非常规油气资源中的关键科学问题.本文基于数值模拟的优点,采用商用有限元软件Nastran模拟弹性波在含裂纹介质中的激发及传播方式,分析了弹性波在该介质中裂纹微结构(密度和纵横比)对弹性波传播动力学特性的依赖程度.结果表明:有限元方法(FEM)可以用于该问题的研究;Hudson等效介质理论(EMT)不适用泊松比近0.5的材料;裂纹密度、纵横比的增大会减小纵波(P波)波速值,以及衰减位移时域响应的首波振幅,且裂纹密度对于该材料的各向异性的影响要远大于纵横比的作用.
其他语种文摘 Understanding mechanism of wave propagation in elastic media with cracks is the key scientific issue in exploration and extraction of shale and other unconventional oil and gas resources. Based on the advantages of the numerical simulation, the excitation and propagation of elastic wave in the cracked media were simulated by Nastran, a commercial solver for finite element analysis. Then the dependence of dynamic characteristics of propagation in that kind of media was further analyzed based on the microstructure (crack density, aspect ratio). Some conclusions were obtained as follows. Finite element method (FEM) would be effectively used to study the issue. Hudson's effective medium theory (EMT) could not be applied into materials with Poisson's ratio of nearly 0.5. Increasing crack density and aspect ratio would reduce the primary wave (P wave) velocity, with decaying the displacement amplitude of the P wave in time-domain. Crack density of the medium exposes greater effect on the anisotropy than the aspect ratio.
来源 北京航空航天大学学报 ,2015,41(9):1686-1692 【核心库】
DOI 10.13700/j.bh.1001-5965.2014.0663
关键词 有限元方法(FEM) ; Hudson理论 ; 频率 ; 裂纹数密度 ; 横纵比
地址

1. 北京航空航天大学航空科学与工程学院, 北京, 100191  

2. 中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1001-5965
学科 力学
基金 国家自然科学基金
文献收藏号 CSCD:5523623

参考文献 共 20 共1页

1.  Gueguen Y. Mechanics of crustal rocks,2011:73-125 被引 4    
2.  Mackenzie J K. The elastic constants of a solid containing spherical holes. Proceedings of the Physical Society.Section B,1950,63(1):1 被引 14    
3.  Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion,and related problems. Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,1957,241(1226):376-396 被引 318    
4.  Bristow J R. Microcracks,and the static and dynamic elastic constants of annealed and heavily cold-worked metals. British Journal of Applied Physics,1960,11(2):81 被引 5    
5.  Walsh J B. The effect of cracks on the compressibility of rock. Journal of Geophysical Research,1965,70(2):381-389 被引 70    
6.  Hudson J A. Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society.88(2),1980:371-384 被引 1    
7.  Hudson J A. Seismic wave propagation through material containing partially saturated cracks. Geophysical Journal International,1988,92(1):33-37 被引 13    
8.  Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International,1981,64(1):133-150 被引 200    
9.  曾新吾. 含裂缝介质中的弹性波传播特性,2013:1-5,18-40,98-121 被引 1    
10.  Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of American Mathematical Society,1943,49(1):1-23 被引 35    
11.  Aoki S. Elastodynamic analysis of crack by finite element method using singular element. International Journal of Fracture,1978,14(1):59-68 被引 1    
12.  Taylor L M. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320 被引 104    
13.  Ma G W. Modeling of wave propagation induced by underground explosion. Computers and Geotechnics,1998,22(3):283-303 被引 31    
14.  Garboczi E J. Elastic moduli of a material containing composite inclusions:Effective medium theory and finite element computations. Mechanics of Materials,2001,33(8):455-470 被引 9    
15.  Grechka V. Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics,2006,71(3):D85-D91 被引 8    
16.  Gaede O. Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic rock. International Journal of Rock Mechanics and Mining Sciences,2012,51:53-63 被引 6    
17.  Mavko G. The rock physics handbook:Tools for seismic analysis of porous media,2009:21-76 被引 1    
18.  Thomsen L. Weak elastic anisotropy. Geophysics,1986,51(10):1954-1966 被引 549    
19.  王勖成. 有限单元法,2003:468-520 被引 13    
20.  Liu N. Nonlinear buckling analyses of a small-radius carbon nanotube. Journal of Applied Physics,2014,115(15):154301 被引 1    
引证文献 2

1 孔岳 基于FEM 研究含孔隙介质中裂纹矩张量反演精度 北京航空航天大学学报,2019,45(6):1114-1121
被引 0 次

2 孔岳 裂纹矩张量反演的传感器排布形式 北京航空航天大学学报,2019,45(7):1380-1387
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号