帮助 关于我们

返回检索结果

紫色土坡地泥岩裂隙潜流中的胶体迁移
Field-scale study of colloid transport in fracture flow from a sloping farmland of purple soil

查看参考文献28篇

文摘 为探求自然胶体迁移进入地下水的潜力,建立原位坡地径流观测场,研究了2013年夏季3场不同雨型降雨事件下,紫色土坡地(1 500 m~2)泥岩裂隙潜流中自然胶体的迁移规律。结果表明: 裂隙潜流中胶体对降雨的响应时间为30 ~ 90 min,比潜流对降雨的响应更迅速,且取决于坡地雨前干旱情况及降雨强度; 胶体浓度峰早于潜流流量峰,峰值浓度相对背景浓度可增加1 ~ 2个数量级,最大雨强及雨型决定潜流流量和胶体浓度峰型。气液界面是胶体初始迁移响应的主要驱动因素,雨水混合土壤前期水对土壤介孔和大孔内壁胶体的剪切、裹携是胶体释放、分散与迁移的主要机制。因此,胶体辅助运移可能成为紫色土地区吸附性较强的污染物(如磷、疏水性农药等)的重要迁移方式。
其他语种文摘 To evaluate natural colloid transport potentials into groundwater,via fracture flow,a field-scale study was undertaken on a large sloping farmland plot (1 500 m~2) in central Sichuan in the summer of 2013. Results indicated that colloid response times varied between 30—90 min; this depending mainly on the preceding soil moisture content and the intensity of rainfall. Colloid flushing occurred prior to peak fracture flow; with colloid concentration peaks appearing earlier than maximum discharge peaks. Peak colloid concentrations were 1—2 orders of magnitude larger than background colloid concentrations. Maximum rainfall intensity and patterns of rainfall dominated fracture flow and colloid concentration. Processes at the air-water interface are suggested to be the main driving factor controlling colloid release and transport during initial responses to rainfall. At these times,the flushing of colloids from soil mesopores and macropores surfaces,driven by the mixing of event rainwater and pre-event mobile soil water,is suggested to be the major mechanism of colloid mobilization and subsequent transport. It is submitted that colloid-facilitated transport could be a very important pathway for the migration of contaminants,particularly those that show large adsorption affinities to soil particles (e. g. phosphorus and hydrophobic pesticides),in the vast purple soil region of Sichuan.
来源 水科学进展 ,2015,26(4):543-549 【核心库】
DOI 10.14042/j.cnki.32.1309.2015.04.011
关键词 紫色土 ; 降雨 ; 胶体迁移 ; 裂隙潜流
地址

中国科学院水利部成都山地灾害与环境研究所, 中国科学院山地表生过程与生态调控重点实验室, 四川, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 1001-6791
学科 地球物理学
基金 中国科学院“百人计划”项目 ;  国家自然科学基金资助项目
文献收藏号 CSCD:5516296

参考文献 共 28 共2页

1.  Zhang W. A Review of Colloid Transport in Fractured Rocks. Journal of Mountain Science,2012,9(6):770-787 被引 12    
2.  李海明. 滨海含水介质胶体对垃圾渗滤液氨氮的吸附特征. 水科学进展,2008,19(3):339-344 被引 5    
3.  Vandevoort A R. Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols. Geoderma,2013,206:101-111 被引 9    
4.  Sun W L. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal,2013,225:464-473 被引 3    
5.  Gooddy D C. The significance of colloids in the transport of pesticides through Chalk. Science of Total Environment,2007,385:262-271 被引 3    
6.  Weisbrod N. Virus transport in a discrete fracture. Water Research,2013,47(5):1888-1898 被引 3    
7.  Mondal P K. Colloid transport in dolomite rock fractures: Effects of fracture characteristics,specific discharge,and ionic strength. Environmental Science & Technology,2012,46(18):9987-9994 被引 5    
8.  Aosai D. Size and composition analyses of colloids in deep granitic groundwater using microfiltration/ultrafiltration while maintaining in situ hydrochemical conditions. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2014,461:279-286 被引 2    
9.  Majumder S. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal,India: The role of organic and inorganic colloids. Science of the Total Environment,2014,468:804-812 被引 3    
10.  商书波. 降雨对土壤胶体释放与迁移的影响研究. 水土保持学报,2009,23(6):199-202 被引 8    
11.  Mckay L D. Field-scale migration of colloidal tracers in a fractured shale saprolite. Ground Water,2000,38(1):139-147 被引 5    
12.  Weisbrod N. Particle transport in unsaturated fractured chalk under arid conditions. Journal of Contaminant Hydrology,2002,56:117-136 被引 3    
13.  Shevenell L. Effects of precipitation events on colloids in a karst aquifer. Journal of Hydrology,2002,255:50-68 被引 4    
14.  Pronk M. Percolation and particle transport in the unsaturated zone of a Karst aquifer. Ground Water,2009,47(3):361-369 被引 3    
15.  Gao Y. Coupled effects of biogeochemical and hydrological processes on C,N,and P export during extreme rainfall events in a purple soil watershed in southwestern China. Journal of Hydrology,2014,511:692-702 被引 19    
16.  Zhao P. Tracing water flow from sloping farmland to streams using oxygen-18 isotope to study a small agricultural catchment in southwest China. Soil and Tillage Research,2013,134:180-194 被引 11    
17.  Zhang W. A coupled field study of subsurface fracture flow and colloid transport. Journal of Hydrology,2015,524:476-488 被引 10    
18.  Mohanty S K. Mobilization of microspheres from a fractured soil during intermittent infiltration events. Vadose Zone Journal,2015,14(1):1-10 被引 3    
19.  Rodrigues S N. Colloid retention mechanisms in single,saturated,variable-aperture fractures. Water Research,2013,47(1):31-42 被引 2    
20.  Becker M W. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests. Ground Water,1999,37(3):387-395 被引 2    
引证文献 6

1 张文静 胶体在地下水中的环境行为特征及其研究方法探讨 水科学进展,2016,27(4):629-638
被引 14

2 鲜青松 薄层紫色土坡耕地胶体颗粒随地表径流及裂隙潜流迁移规律 农业工程学报,2017,33(13):143-150
被引 4

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号