帮助 关于我们

返回检索结果

基于AFM的细胞表面超微形貌成像与机械特性测量研究进展
In situ Imaging The Cellular Ultra-microstructures and Measuring The Cellular Mechanical Properties Using Atomic Force Microscopy

查看参考文献101篇

李密   刘连庆 *   席宁 *   王越超  
文摘 原子力显微镜(AFM)以其独特的优势(纳米级空间分辨率、皮牛级力灵敏度、免标记、可在溶液下工作)成为细胞生物学的重要研究手段.AFM不仅可以对活细胞表面超微形貌进行可视化表征,同时还可通过压痕技术对细胞机械特性(如杨氏模量)进行定量测量,为原位探索纳米尺度下单个活细胞动态生理活动及力学行为提供了可行性.过去的数十年中,研究人员利用AFM在细胞超微形貌成像和机械特性测量方面开展了广泛的应用研究,展示了有关细胞生理活动的大量新认识,为生命医药学领域相关问题的解决提供了新的思路;同时AFM自身的性能也在不断得到改进和提升,进一步促进了其在生命科学领域的应用.本文结合作者在应用AFM观测纳米尺度下癌症靶向药物作用效能方面的研究工作,介绍了AFM成像与细胞机械特性测量的原理,总结了近年来AFM用于细胞表面超微形貌成像与机械特性测量所取得的进展,讨论了AFM表征与检测细胞生理特性存在的问题,并对其未来发展方向进行了展望.
其他语种文摘 Due to the unique advantages (e.g., nanometer spatial resolution, picoNewton force sensitivity, label-free, can work in aqueous conditions), atomic force microscopy(AFM) has become an important instrument in cell biology. AFM can not only visualize the ultra-microstructures on the surface of living cells, but also can quantify the cellular mechanical properties (such as Young's modulus) by indenting technique, opening the doors to in situ explore the dynamical physiological activities and mechanical behaviors of single living cells at the nanoscale. In the past decades, researchers have carried out extensive investigations in imaging the cellular ultra-microstructures and measuring the cellular mechanical properties using AFM, yielding novel insights into our understanding of cellular physiological activities and providing a new idea to solve the related issues in the field of biomedicine. The AFM's own performances have also been steadily improved, which further promote its applications in biology. In this paper, based on our own research in investigating the killing effects of targeted cancer drugs at the nanoscale using AFM, the principle of AFM imaging and measuring the cellular mechanical properties was presented, the progress in visualizing the cellular ultra-microstructures and quantifying the cellular mechanical properties using AFM was summarized, the challenges facing AFM single-cell assay and its future directions were discussed.
来源 生物化学与生物物理进展 ,2015,42(8):697-712 【核心库】
DOI 10.16476/j.pibb.2015.0158
关键词 原子力显微镜 ; 细胞 ; 超微形貌 ; 成像 ; 机械特性 ; 杨氏模量
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016

语种 中文
文献类型 综述型
ISSN 1000-3282
学科 细胞生物学;生物物理学
基金 国家自然科学基金 ;  中国科学院沈阳自动化研究所机器人学重点实验室基金 ;  中国科学院、国家外国专家局创新团队国际合作伙伴计划资助项目
文献收藏号 CSCD:5497690

参考文献 共 101 共6页

1.  Hanahan D. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674 被引 1630    
2.  Singh D. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science,2012,337(6099):1231-1235 被引 19    
3.  Burrell R A. The causes and consequences of genetic heterogeneity in cancer evolution. Nature,2013,501(7467):338-345 被引 45    
4.  Tanenbaum M E. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell,2014,159(3):635-646 被引 66    
5.  Ma D. Structure and mechanism of a glutamate-GABA antiporter. Nature,2012,483(7391):632-636 被引 11    
6.  Wei C. Calcium flickers steer cell migration. Nature,2009,457(7231):901-905 被引 17    
7.  Yu X. Label-free detection methods for protein microarrays. Proteomics,2006,6(20):5493-5503 被引 5    
8.  Carlo D D. A mechanical biomarker of cell state in medicine. J Lab Autom,2012,17(1):32-42 被引 17    
9.  Zheng Y. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip,2013,13(13):2464-2483 被引 6    
10.  Rees D C. Sickle-cell disease. Lancet,2010,376(9757):2018-2031 被引 6    
11.  Lee G Y H. Biomechanics approaches to studying human diseases. Trends Biotechnol,2007,25(3):111-118 被引 26    
12.  Gossett D R. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci USA,2012,109(20):7630-7635 被引 22    
13.  Binnig G. Atomic force microscope. Phys Rev Lett,1986,56(9):930-933 被引 458    
14.  Hinterdorfer P. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods,2006,3(5):347-355 被引 45    
15.  Muller D J. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol,2008,3(5):261-269 被引 29    
16.  Neuman K. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods,2008,5(6):491-505 被引 93    
17.  Liu B. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell,2014,157(2):357-368 被引 13    
18.  Dupres V. Fishing single molecules on live cells. Nano Today,2009,4(3):262-268 被引 6    
19.  Eghiaian F. Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J,2015,108(6):1330-1340 被引 7    
20.  Zimmer C C. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B,2014,118(5):1246-1255 被引 1    
引证文献 6

1 戴莹萍 微悬臂生物传感器 化学进展,2016,28(5):697-710
被引 1

2 李密 基于AFM的细胞弹性及黏弹性研究 中国科学. 生命科学,2017,47(6):629-639
被引 2

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号