帮助 关于我们

返回检索结果

纳米颗粒与细胞的交互作用
Interaction between nanoparticles and the cell

查看参考文献125篇

王九令 1   孙佳姝 2   施兴华 1 *  
文摘 与大块材料相比, 纳米尺度材料有着独特的光学、电学、力学和生物学性质, 这使得纳米颗粒在药物输运和肿瘤成像等医学方面展现出巨大的应用前景. 同时, 愈来愈多的工业化纳米颗粒和纳米材料的制备, 使得其生物安全性也受到很大的关注. 由于纳米颗粒进入体内后的作用发生在细胞层面上, 这要求我们很好地去理解纳米颗粒与细胞之间的相互作用. 大量的实验表明, 纳米颗粒吸附在细胞膜表面, 并通过不同方式被细胞所摄取. 纳米颗粒的尺寸、形状、表面化学性质、表面电荷分布、拓扑结构以及颗粒弹性性能等都对两者间的相互作用有着显著的影响. 本文简要介绍颗粒进入细胞的路径, 着重阐述影响颗粒/细胞交互作用的关键因素, 并对后续的研究方向进行展望.
其他语种文摘 Compared with bulk materials, nanomaterials have unique optical, electronic, mechanical, and biological properties that have enormous potential for use in drug delivery and cancer imaging. Since nanoparticles (NPs) interact with the human body at the cellular level, there is a need for us to understand the interaction between NPs and cells. Many experimental results show that NPs adsorb onto the cell membrane and are internalized by the cell through various pathways. Due to the complexity of cells, as well as their host environments, the size, shape, surface chemical properties, charge distribution, structural topology, and elasticity of NPs can each have a large influence on this interaction. For instance, some types of cells are better able to take up NPs with greater curvature to their shape, while others are better able to take up NPs with less curvature. Similarly, some cells internalize soft-structured NPs, while others respond best to rigid NPs. The mechanisms underlying these differences in interaction can be explained with theoretical models and simulations. Here, we briefly introduce the pathways for cellular uptake of nanoparticles, and then review the recent progress in identifying factors that affect this nanoparticle-cell interaction. We also discuss the potential for future research.
来源 科学通报 ,2015,60(21):1976-1986 【核心库】
DOI 10.1360/N972014-01199
关键词 纳米颗粒 ; 细胞膜 ; 交互作用 ; 药物输运 ; 细胞毒性 ; 细胞内吞
地址

1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

2. 国家纳米科学中心, 北京, 100190

语种 中文
文献类型 综述型
ISSN 0023-074X
学科 基础医学;一般工业技术
基金 国家自然科学基金优秀青年科学基金 ;  国家自然科学基金
文献收藏号 CSCD:5485224

参考文献 共 125 共7页

1.  Iversen T G. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today,2011,6:176-185 被引 23    
2.  Devadasu V R. Can controversial nanotechnology promise drug delivery?. Chem Rev,2013,113:1686-1735 被引 6    
3.  Tang F Q. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater,2012,24:1504-1534 被引 35    
4.  Elsabahy M. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev,2012,41:2545-2561 被引 30    
5.  Sahay G. Endocytosis of nanomedicines. J Control Release,2010,145:182-195 被引 48    
6.  Boisselier E. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev,2009,38:1759-1782 被引 69    
7.  Duan X P. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small,2013,9:1521-1532 被引 7    
8.  Wang B. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Accounts Chem Res,2013,46:761-769 被引 25    
9.  Nel A E. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater,2009,8:543-557 被引 168    
10.  Gao H J. Probing mechanical principles of cell-nanomaterial interactions. J Mech Phys Solids,2014,62:312-339 被引 1    
11.  Zhao F. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small,2011,7:1322-1337 被引 37    
12.  Mu Q X. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev,2014,114:7740-7781 被引 1    
13.  Doherty G J. Mechanisms of endocytosis. Annu Rev Biochem,2009,78:857-902 被引 70    
14.  Champion J A. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA,2006,103:4930-4934 被引 37    
15.  Canton I. Endocytosis at the nanoscale. Chem Soc Rev,2012,41:2718-2739 被引 16    
16.  Wang Z J. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano,2009,3:4110-4116 被引 1    
17.  Agarwal R. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA,2013,110:17247-17252 被引 18    
18.  Verma A. Effect of surface properties on nanoparticle-cell interactions. Small,2010,6:12-21 被引 45    
19.  Wong-Ekkabut J. Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol,2008,3:363-368 被引 16    
20.  Lin J Q. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano,2010,4:5421-5429 被引 7    
引证文献 4

1 淡墨 不同表面修饰的纳米氧化铁颗粒诱导胶质瘤细胞凋亡的差异 中国新药杂志,2016,25(24):2887-2892
被引 3

2 施兴华 肿瘤及其微环境的力学问题 力学进展,2018,48(1):360-409
被引 2

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

ResearcherID 链接
施兴华 F-9378-2010
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号