帮助 关于我们

返回检索结果

微型腿式胶囊机器人的设计与分析
Design and Analysis of Micro Legged Capsule Robot

查看参考文献24篇

文摘 针对目前主动式胶囊机器人存在的安全性和有效性问题,提出了一种基于伸缩和平移机构的腿式胶囊机器人.其中,伸缩机构采用微型连杆结构,平移结构采用丝杠-螺母结构.在空间位置、速度和输出力等约束条件下,对这两套驱动机构进行建模和分析,实现尺寸参数和电动机工作参数的优化.经过优化,伸展速度的范围为16.8 mm/s~34.2 mm/s,伸展力的范围为2.45 N~0.44 N,伸展效率的范围为92.8%~34.0%;而平移速度、平移推力和平移效率则基本保持恒定,分别为50 mm/min、4.20 N和50%.胶囊机器人驱动单元的长度和外径分别为33 mm和16 mm.最后,在离体猪结肠内测试该腿式胶囊平移机构机器人的性能,结果表明它可实现有效、安全的伸缩与平移运动,其平均速度可达25 mm/min.
其他语种文摘 Facing the safety and feasibility problems of the existing active capsule robots, a legged capsule robot is proposed based on telescopic and translational mechanisms. The telescopic mechanism adopts the micro link structure, while the translational mechanism adopts the screw-nut structure. With the constraints of spatial location, speed and driving force, these two mechanisms are modeled and analyzed to optimize the dimensional parameters and motor operating parameters. After the optimization, the range of the telescopic speed is 16.8 mm/s~34.2 mm/s, the range of the telescopic force is 2.45N~0.44 N, and the range of the telescopic efficiency is 92.8%~34.0%. Meanwhile, the translational speed, the force and the efficiency remain constant basically, which are 50 mm/min, 4.20 N and 50% respectively. The length and the outer diameter of the driving unit in the capsule robot are 33mm and 16mm respectively. Finally, the performance of the legged capsule robot is tested in the porcine colon, and the result shows that it can realize the telescopic and translational locomotion efficiently and safely with the mean speed of 25 mm/min.
来源 机器人 ,2015,37(2):246-253 【核心库】
DOI 10.13973/j.cnki.robot.2015.0246
关键词 胶囊机器人 ; 微型机器人 ; 胃肠道机器人 ; 周向伸缩 ; 微型连杆结构
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 机械、仪表工业
基金 国家自然科学基金资助项目 ;  中国科学院沈阳自动化研究所机器人学重点实验室基金
文献收藏号 CSCD:5414404

参考文献 共 24 共2页

1.  Siegel R. Colorectal cancer statistics. CA: A Cancer Journal for Clinicians,2014,64(2):104-117 被引 149    
2.  Iddan G. Wireless capsule endoscopy. Nature,2000,405(6785):417 被引 155    
3.  Carpi F. Magnetically controllable gastrointestinal steering of video capsules. IEEE Transactions on Biomedical Engineering,2011,58(2):231-234 被引 10    
4.  Swain P. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans. Gastrointestinal endoscopy,2010,71(7):1290-1293 被引 16    
5.  Rey J F. Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointestinal Endoscopy,2012,75(2):373-381 被引 17    
6.  张永顺. 新型肠道胶囊式微型机器人的运动特性. 机械工程学报,2009,45(8):18-23 被引 9    
7.  Yim S. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Transactions on Robotics,2012,28(1):183-194 被引 14    
8.  Simi M. Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. IEEE/ASME Transactions on Mechatronics,2010,15(2):170-180 被引 6    
9.  Kim B. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical,2006,125(2):429-437 被引 17    
10.  Lin W. Design of a wireless anchoring and extending micro robot system for gastrointestinal tract. The International Journal of Medical Robotics and Computer Assisted Surgery,2013,9(2):167-179 被引 5    
11.  Kim Y T. Novel propelling mechanisms based on frictional interaction for endoscope robot. Tribology Transactions,2010,53(2):203-211 被引 5    
12.  Menciassi A. Legged locomotion in the gastrointestinal tract. IEEE/RSJ International Conference on Intelligent Robots and Systems,2004:937-942 被引 1    
13.  Sliker L J. Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surgical Endoscopy and Other Interventional Techniques,2012,26(10):2862-2869 被引 4    
14.  Woo S. Stopping mechanism for capsule endoscope using electrical stimulus. Medical and Biological Engineering and Computing,2010,48(1):97-102 被引 5    
15.  Kim H M. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment. Gastrointestinal Endoscopy,2010,72(2):381-387 被引 10    
16.  林蔚. 驻留–伸缩式微型胃肠道机器人的力学建模. 机器人,2012,34(5):553-558 被引 2    
17.  Gorini S. A novel SMAbased actuator for a legged endoscopic capsule. IEEE/RASEMBS International Conference on Biomedical Robotics and Biomechatronics,2006:443-449 被引 1    
18.  Quirini M. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy,2008,67(7):1153-1158 被引 6    
19.  Quirini M. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME Transactions on Mechatronics,2008,13(2):169-179 被引 16    
20.  Valdastri P. A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Transactions on Robotics,2009,25(5):1047-1057 被引 15    
引证文献 2

1 迟明路 花瓣型胶囊机器人空间转弯磁矩研究 华中科技大学学报. 自然科学版,2018,46(4):80-85
被引 0 次

2 孙宏斌 低碳智能人体电网:概念、架构和展望 中国电机工程学报,2023,43(7):2585-2597
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
刘浩 0000-0002-8278-1263
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号