帮助 关于我们

返回检索结果

3自由度旋翼飞行机械臂系统动力学建模与预测控制方法
Strategy of Dynamic Modeling and Predictive Control on 3-DoF Rotorcraft Aerial Manipulator System

查看参考文献24篇

文摘 旋翼飞行机械臂(rotorcraft aerial manipulator,RAM)系统是安装在飞行机器人上的可操作型机械臂,悬停模式下执行准确的空中操作时旋翼无人机与所加机械臂之间存在相对扰动,通过分离机械臂与飞行机器人进行动力学建模并不能有效消除这种扰动。本文基于对相互扰动力学作用的分析建立整体动力学模型,并在悬停飞行模式下将其简化为线性控制参考模型。进而对旋翼系统控制延时所引起的动力学扰动进行补偿,同时设计预测控制器来消除末端执行器的位置和姿态误差。最后,在存在内部和外部扰动的情况下,设定销钉插入操作任务进行控制方法的对比仿真。末端执行器位姿偏差的仿真结果表明了模型结构与控制方法的有效性。
其他语种文摘 Rotorcraft aerial manipulator (RAM) system is an aerial robot with manipulators. When performing precise operation in hovering mode, there exists relative disturbance between the rotorcraft aerial vehicle and the manipulator, which cannot be eliminated through establishing dynamic models of the manipulator and the rotorcraft separately. In this research, the overall dynamics model is firstly developed based on dynamic disturbance of the both components, which is simplified as a linear control reference model in hovering mode. The dynamics disturbance caused by rotor system's control delay is compensated, and a predictive controller is designed to eliminate the errors of position and attitude of the end-effector. At last, control strategies are compared in simulative peg-in-hole tasks in cases of external and internal disturbances. The effectiveness of the proposed model and control method is verified by the simulation results of end-effector pose error.
来源 机器人 ,2015,37(2):152-160 【核心库】
DOI 10.13973/j.cnki.robot.2015.0152
关键词 旋翼无人机 ; 飞行机械臂 ; 动力学建模 ; 预测控制 ; 飞行仿真
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 自动化技术、计算机技术
基金 国家863计划 ;  国家自然科学基金资助项目
文献收藏号 CSCD:5414393

参考文献 共 24 共2页

1.  Behnke D. UAV-based connectivity maintenance for borderline detection. IEEE Vehicular Technology Conference,2013:1-6 被引 1    
2.  Nigam N. Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE Transactions on Control Systems Technology,2012,20(5):1236-1251 被引 27    
3.  Skoglar P. Road target search and tracking with gimballed vision sensor on an unmanned aerial vehicle. Remote Sensing,2012,4(7):2076-2111 被引 1    
4.  Kobilarov M. Nonlinear trajectory control of multi-body aerial manipulators. Journal of Intelligent and Robotic Systems,2014,73(1/4):679-692 被引 6    
5.  Kondak K. Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. International Journal of Advanced Robotic Systems,2013,10:No.145 被引 3    
6.  Huber F. First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2013:3452-3457 被引 3    
7.  Mellinger D. Design, modeling, estimation and control for aerial grasping and manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems,2011:2668-2673 被引 5    
8.  Korpela C M. MM-UAV: Mobile manipulating unmanned aerial vehicle. Journal of Intelligent and Robotic Systems,2012,65(1/4):93-101 被引 6    
9.  Scholten J L J. Interaction control of an UAV endowed with a manipulator. IEEE/RSJ International Conference on Robotics and Automation,2013:4910-4915 被引 1    
10.  Kim S. Aerial manipulation using a quadrotor with a two DoF robotic arm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2013:4990-4995 被引 5    
11.  Ding X L. Dynamic analysis, optimal planning and composite control for aerial arm-operating with a multipropeller multifunction aerial robot. IEEE International Conference on Mechatronics and Automation,2012:420-427 被引 1    
12.  Song D L. Modelling a small-size unmanned helicopter using optimal estimation in the frequency domain. International Journal of Intelligent Systems Technologies and Applications,2010,8(1/4):70-85 被引 1    
13.  Song D L. Aggressive maneuvering of unmanned helicopters: Learning from human based on neural networks. Advances in Intelligent Systems and Computing,2012:693-703 被引 1    
14.  Pounds P E I. Grasping from the air: Hovering capture and load stability. IEEE International Conference on Robotics and Automation,2011:2491-2498 被引 7    
15.  Song D L. Active model-based predictive control and experimental investigation on unmanned helicopters in full flight envelope. IEEE Transactions on Control Systems Technology,2013,21(4):1502-1509 被引 4    
16.  Orsag M. Hybrid adaptive control for aerial manipulation. Journal of Intelligent and Robotic Systems,2014,73(1/4):693-707 被引 7    
17.  Korpela C. Towards the realization of mobile manipulating unmanned aerial vehicles (MMUAV): Peg-in-hole insertion tasks. IEEE International Conference on Technologies for Practical Robot Applications,2013:54-59 被引 1    
18.  Bramwell A R S. Bramwell's helicopter dynamics. 2ed ed,2001 被引 1    
19.  He Y Q. Acceleration-feedback-enhanced robust control of an unmanned helicopter. Journal of Guidance, Control, and Dynamics,2010,33(4):1236-1250 被引 7    
20.  Klancar G. Tracking-error model-based predictive control for mobile robots in real time. Robotics and Autonomous Systems,2007,55(6):460-469 被引 20    
引证文献 8

1 张艺巍 3维复杂山地环境下旋翼无人飞行器高时效航迹规划策略 机器人,2016,38(6):727-737
被引 3

2 马乐 全向旋翼机械臂设计、建模及动态补偿PID控制 仪器仪表学报,2018,39(3):89-99
被引 4

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号