帮助 关于我们

返回检索结果

基于真实微观结构的SiC_p/Al复合材料轧制过程模拟
Rolling Process Simulation of SiC_p/Al Composites via a Microstructure-Based Model

查看参考文献25篇

阚盈 1   刘振刚 1   张士宏 1 *   张立文 2   程明 1   宋鸿武 1  
文摘 SiC_p/Al复合材料具有高比强度、 高比刚度、 高耐磨性、 低热膨胀系数和高热导率的优点, 主要应用于航空航天领域中的关键结构件。 轧制是生产SiC_p/Al复合材料最常用的塑性加工手段之一。 在轧制SiC_p/Al复合材料时, 坯料容易产生边部裂纹缺陷, 这种缺陷除了与复合材料塑性较差有关之外, 还与轧制压下量选择不合理有关。 为了准确预测SiC_p/Al复合材料的轧制缺陷, 建立了基于SiC_p/Al复合材料真实微观结构的板材轧制过程有限元模型, 该模型中嵌入了基体延性损伤断裂、 颗粒脆性断裂和界面损伤断裂模型。 用实验曲线校对法确定了损伤断裂模型参数。 模拟了相对压下量为5%, 10%, 20%和25%时SiC_p/Al复合材料的轧制过程, 结果表明, 在相对压下量为25%时, 变形不均匀引起的边部拉应力导致了对应区域微观结构的损伤断裂, 从而使复合材料板材产生边裂缺陷。 在拉应力作用下, 孔隙在增强颗粒与基体材料界面处形核, 随着变形进行, 孔隙在基体材料中扩展聚集, 最终导致复合材料产生边裂缺陷。 SiC_p/Al复合材料板材轧制的数值模拟结果与实验结果吻合较好。
其他语种文摘 SiC_p/Al composites, exhibiting high specific strength, high specific stiffness, high wear resistance, low thermal expansion coefficients and high thermal conductivity, are mainly used in key structural parts in the aeronautics and astronautics field. For the production of SiC_p/Al composites, rolling is one of the most commonly used plastic working methods. Unfortunately, edge crack defects arising from the rolling of the SiC_p/Al composites were apt to occur. The generation of edge cracks was related to the poor plasticity of SiC_p/Al composites and the unreasonable height reduction. In order to accurately predict the rolling defect of SiC_p/Al composites, a finite element model of rolling was developed based on the microstructure of SiC_p/Al composites. Matrix damage, particle cracking and interface debonding were coupled in the model. The parameters of damage models were identified using best-fit methods. The rolling processes of SiC_p/Al composites were simulated under relative reductions of 5%, 10%, 20% and 25%. The results showed that when the rolling reduction was 25%, the edge crack of the SiC_p/Al composite plate was caused by tensile stress, which was produced by non-uniform deformation, leading to the damage of microstructures. The microstructure simulation results of SiC_p/Al composites indicated that micro pores initiated at the interface between particles and matrix, and then propagated in the matrix until the composites failed. The simulation results agreed well with experimental results.
来源 稀有金属 ,2015,39(4):289-299 【核心库】
DOI 10.13373/j.cnki.cjrm.2015.04.001
关键词 颗粒增强复合材料 ; 轧制 ; 损伤模型 ; 基于微观结构的模型
地址

1. 中国科学院金属研究所, 辽宁, 沈阳, 110016  

2. 大连理工大学材料科学与工程学院, 辽宁, 大连, 116024

语种 中文
文献类型 研究性论文
ISSN 0258-7076
学科 金属学与金属工艺
基金 国家科技部高技术研究发展计划项目 ;  国家973计划
文献收藏号 CSCD:5408541

参考文献 共 25 共2页

1.  赵春荣. 一维SiC纳米材料制备技术研究进展. 稀有金属,2014,38(2):320 被引 5    
2.  Xu S C. Effect of rolling reduction on microstructures and tensile properties of hot-rolled Al_(18)B_4O_(33) whisker-reinforced 6061 aluminum alloy composite. Materials Science and Engineering: A,2012,539(30):128 被引 1    
3.  Mortensen A. Metal matrix composites. Annual Review of Materials Research,2010,40(1):243 被引 22    
4.  Yuan M N. Numerical analysis of the stress-strain distributions in the particle reinforced metal matrix composite SiC/6064Al. Materials & Design,2012,38(7):1 被引 13    
5.  Xu S C. Evolution of texture during hot rolling of aluminum borate whisker-reinforced 6061 aluminum alloy composite. Materials Science and Engineering: A,2011,528(7/8):3243 被引 2    
6.  王博. SiC_p/2024Al复合材料板材脉冲电流辅助拉深成形. 锻压技术,2012,37(5):22 被引 12    
7.  Kang G. Effect of interfacial bonding on uniaxial ratchetting of SiC_p/6061Al composites: finite element analysis with 2-D and 3-D unit cells. Materials Science and Engineering: A,2008,487(1):431 被引 2    
8.  Mcwilliams B. Influence of hot rolling on the deformation behavior of particle reinforced aluminum metal matrix composite. Materials Science and Engineering: A,2013,577(1):54 被引 3    
9.  Williams J J. Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites. Materials Science and Engineering: A,2012,557(1):113 被引 10    
10.  Wang Z W. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu alloy composites. Materials Science and Engineering: A,2010,527(24):6537 被引 5    
11.  Wang X. Finite element simulation of the failure process of single fiber composites considering interface properties. Composites Part B: Engineering,2012,45(1):573 被引 1    
12.  Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology,1977,99(1):2 被引 228    
13.  Tvergaard V. Analysis of the cup-cone fracture in a round tensile bar. Acta metallurgica,1984,32(1):157 被引 137    
14.  Jeong H. A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices. International Journal of Solids And Structures,2002,39(5):1385 被引 2    
15.  Canal L P. Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear. International Journal of Solids and Structures,2009,46(11):2265 被引 4    
16.  Hibbitt K A S. ABAQUS: Theory Manual,1997:150 被引 1    
17.  Camanho P P. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials,2003,37(16):1415 被引 79    
18.  刘振宇. 二次挤压对SiCp/2009A1复合材料微观结构和力学性能的影响. 金属学报,2010,46(9):1121 被引 6    
19.  Tursun G. The influence of transition phases on the damage behaviour of an Al/10vol.% SiC composite. Computational Materials Science,2006,37(1):119 被引 2    
20.  Arsenault R J. Strengthening of composites due to microstructural changes in the matrix. Acta Metallurgica et Materialia,1991,39(1):47 被引 22    
引证文献 6

1 周丽 SiCp/Al复合材料热轧过程的有限元模拟 金属学报,2015,51(7):889-896
被引 7

2 郑钢 高强度钢汽车纵梁的冲压成形模拟和回弹补偿 锻压技术,2016,41(2):64-67
被引 7

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号