帮助 关于我们

返回检索结果

Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene
阴离子对氮掺杂石墨烯修饰金属双氢氧化合物结构与赝电容性能的影响

查看参考文献49篇

文摘 Electrochemical capacitors (EC) bear faster charge-discharge; however, their real applications are still on a long away due to lower capacitance and energy densities which mainly arise from simple surface charge accumulation or/and reaction. Here, a novel synthesis strategy was designed to obtain the purposeful hybrids of nickel cobalt double hydroxide (NiCoDH) with genetic morphology to improve their electrochemical performance as electrode of EC. Nanostructures of metal hydroxides were grown on the nitrogen-doped graphene (NG) sheets by utilizing defects as nucleation sites and their composition was optimized both by tuning the ratio of Ni:Co as well as the counter halogen and carbonate anions to improve the porosity, stabilize the structure and mediate the redox reaction. The growth of the hybrids was guided by the Co ions through topochemical transformation supported by hoping charge transfer process and olation growth. NG overcoating successfully protects the nanostructure of NiCoDH during electrochemical test and enhances overall conductivity of the electrode, improving the mass and ionic transportations. As a result, the hybrid exhibits excellent capacitance of 2925 F g~(-1) at 1 A g~(-1), as well as long cyclic stability of 10,000 cycles with good capacity retention of 90% at 16 A g~(-1). Furthermore, the hybrid shows excellent energy and power densities of 52 Wh kg~(-1) and 3191 W kg~(-1), respectively at discharge rate of 16 A g~(-1). It is expected that this strategy can be readily extended to other metal hydroxides, oxides and sulphides to improve their electrochemical performances.
其他语种文摘 超级电容器因为具有充放电时间短的特点引起了人们的广泛关注.然而,由于电极表面的电荷积聚和化学反应,电容器的比电容及能量密度大大降低,限制了超级电容器的实际应用.本文提出了一种新颖的合成方法用以制备基于镍钴双氢氧化物的复合材料,该复合材料作为超级电容器的电极具有优异的电化学性能.利用氮掺杂石墨烯的缺陷,金属氢氧化物纳米结构在氮掺杂石墨烯表面生长,形成复合结构.通过调节并优化镍钴的元素比以及卤素离子、碳酸根离子的含量,能够改善材料的孔隙度、提高材料结构的稳定性以及促进电化学反应.金属氢氧化物的形成由钴离子的氧化反应引导,并通过定向生长方式形成一维结构.氮掺杂石墨烯有效保护镍钴双氢氧化物的纳米结构,使其在电化学测试中不被破坏,同时,氮掺杂石墨烯还能够提高电极的导电性,利于物质及离子传输.电化学测试表明,该复合材料在电流密度为1 A g~(-1)时,比电容高达2925 Fg~(-1),并且在高电流密度下(16 A g~(-1))展现出了优异的循环稳定性,在10,000次循环后比电容仍然保持在90%.在16 Ag~(-1)的电流密度下,材料的能量密度和功率密度分别达到了52 Wh kg~(-1)和3191 W kg~(-1). 该合成方法为制备基于金属氢氧化物、氧化物、硫化物等高性能超级电容器电极提供了新的途径.
来源 Science China. Materials ,2015,58(2):114-125 【核心库】
DOI 10.1007/s40843-015-0028-3
地址

1. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871  

2. Research Center of Materials Science, Beijing Institute of Technology, Beijing, 100081  

3. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871

语种 英文
文献类型 研究性论文
ISSN 2095-8226
学科 一般工业技术
基金 supported by the National Natural Science Foundation of China and the Research Grants Council Joint Research Scheme ;  国家自然科学基金 ;  北京市自然科学基金 ;  the Fund of Beijing National Laboratory for Molecular Sciences and Doctoral Program of the Ministry of Education of China
文献收藏号 CSCD:5392956

参考文献 共 49 共3页

1.  Qing L. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today,2014,9:668-683 被引 3    
2.  Mahmood N. Multifunctional Co_3S_4/ graphene composites for lithium ion batteries and oxygen reduction reaction. Chem A Eur J,2013,19:5183-5190 被引 13    
3.  Mahmood N. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A,2014,2:15-32 被引 20    
4.  Mahmood N. Hybrid of Co_3Sn_2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery-anode. ACS Nano,2013,7:10307-10318 被引 10    
5.  Mahmood N. Electrode nanostructures in lithium-based batteries. Adv Sci 被引 2    
6.  Zhu Y. Carbon-based supercapacitors produced by activation of graphene. Science,2011,332:1537-1541 被引 198    
7.  Qu B. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale,2012,4:7810-7816 被引 3    
8.  Wang H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev,2013,42:3088-3113 被引 24    
9.  Chmiola J. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science,2006,313:1760-1763 被引 178    
10.  Liu C. Graphene-based super-capacitor with an ultrahigh energy density. Nano Lett,2010,10:4863-4868 被引 76    
11.  Tahir M. Multifunctional g-C_3N_4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl Mater Interfaces,2013,6:1258-1265 被引 4    
12.  Liang Q. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale,2014,6:13831-13837 被引 21    
13.  Tao J. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale 被引 1    
14.  Lu Q. Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed,2013,52:1882-1889 被引 27    
15.  Zhang Y Z. Porous hollow Co_3O_4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale,2014,6:14354-14359 被引 15    
16.  Ma W. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties. Nanoscale,2014,6:13870-13875 被引 1    
17.  Wu H B. Facile synthesis of mesoporous Ni_(0.3) Co_(2.7)O_4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci,2013,6:3619-3626 被引 10    
18.  Hu Y Y. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater,2013,12:1130-1136 被引 25    
19.  Wang Y. Recent progress in supercapacitors: from materials design to system construction. Adv Mater,2013,25:5336-5342 被引 23    
20.  Cheng Y. Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ Sci,2013,6:3314-3321 被引 6    
引证文献 6

1 Wang Zhuo Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes Science China. Materials,2015,58(12):944-952
被引 17

2 Gu Xingxing Graphene-Based Sulfur Composites for Energy Storage and Conversion in Li-S Batteries Chinese Journal of Chemistry,2016,34(1):13-31
被引 0 次

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号