帮助 关于我们

返回检索结果

电离层周日变化对解算GPS硬件延迟稳定性的影响
Influence of Ionospheric Diurnal Variation on the Estimated GPS Differential Code Bias

查看参考文献22篇

文摘 针对电离层周日变化特征分析了其可能对SCORE方法估算的硬件延迟稳定性的影响.利用BJFS以及XIAM台站的GPS观测数据,解算了位于太阳活动高年(2001年)和太阳活动低年(2009年)的卫星硬件延迟并分析了估算的硬件延迟的稳定性.研究发现,电离层周日变化对估算的硬件延迟稳定性具有一定影响,但是利用不同台站所得到的卫星硬件延迟稳定性在昼夜不同时间上的解算结果存在一定差异.电离层周日变化对利用BJFS 台站数据解算的硬件延迟稳定性日夜差异较为明显,在太阳活动高年利用XIAM台站数据解算的硬件延迟日夜稳定性差异不很明显,由于XIAM台站处于电离层赤道异常峰附近,夜间电离层变化很大,因此对比中纬度地区,电离层周日变化对赤道异常峰附近地区硬件延迟稳定性解算结果的影响相对较小,但在太阳活动低年,其影响仍较为显著.
其他语种文摘 The condition of smooth temporal and spatial change of ionosphere should be demanded in all the methods to estimate the GPS Differential Code Bias (DCB) from GPS observation. Nevertheless, because the ionosphere usually exhibits variation to different degrees, this condition is just an approximation. Therefore, it can be indicated that the stability of GPS DCB estimated from GPS observation is affected by the ionospheric status. With SCORE DCB estimation method and GPS data obtained at BJFS (middle latitude) and XIAM (low latitude) stations in 2001 and 2009,the satellites DCBs are estimated respectively. Especially, the influence of ionospheric diurnal variation on the DCB stability is verified. It is found that the condition of the ionospheric diurnal variation affects the stability of satellites DCBs estimated from GPS observations, and the satellite DCBs estimated from nighttime GPS data are more stable than that from daytime data. The stabilities of estimated DCBs from BJFS data in 2001 and 2009, and those from XIAM data in 2009 exhibit heavy dependence on local time, but the difference is not obvious for the DCBs estimated from XIAM data in 2001. XIAM station is located near the equatorial ionospheric anomaly, and the ionosphere of this region exhibits notable variations even in the nighttime in solar maximum phase. This may be the reason for the weak dependence of estimated DCBs on local time.
来源 空间科学学报 ,2015,35(2):143-151 【核心库】
关键词 GPS ; 电离层 ; 电离层总电子含量 ; 硬件延迟
地址

北京大学地球与空间科学学院, 北京, 100871

语种 中文
文献类型 研究性论文
ISSN 0254-6124
学科 地球物理学
基金 国家973计划 ;  国家自然科学基金项目
文献收藏号 CSCD:5363289

参考文献 共 22 共2页

1.  Lanyi G E. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci,1988,23(4):483-492 被引 27    
2.  Coco D S. Variability of GPS satellite differential group delay biases. IEEE Trans. Aeros. Elect Syst,1991,27(6):931-938 被引 24    
3.  Sardon E. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases. Radio Sci,1997,32(5):1899-1910 被引 31    
4.  Ma G. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. J. Com-mun. Res. Lab,2002,49(4):121-133 被引 1    
5.  Otsuka Y. A New Technique for Mapping of Total Electron Content Using GPS Network in Japan,2001 被引 1    
6.  Liu Z. Ionospheric TEC predictions over a local area GPS reference network. GPS Solut,2004,8(1):23-29 被引 3    
7.  Sardon E. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci,1994,29(3):577-586 被引 39    
8.  Davies K. Studying the ionosphere with the Global Positioning System. Radio Sci,1997,32(4):1695-1703 被引 3    
9.  Lunt N. The effect of the protonosphere on the estimation of GPS total electron content: Validation using model simulations. Radio Sci,1999,34(5):1261-1271 被引 3    
10.  Zhang W. The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann. Geophys,2009,27:1613-1623 被引 8    
11.  Zhang D H. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Ann. Geophys,2010,28(8):09927689 被引 1    
12.  Anghel A. Kalman filter-based algorithms for monitoring the ionosphere and plas-masphere with GPS in near-real time. J. Atmos. Solar-Terr. Phys,2009,71(1):158-174 被引 2    
13.  Carrano C S. Kalman filter estimation of plasmaspheric total electron content using GPS. Radio Sci,2009,44(1):35-42 被引 2    
14.  Ma X F. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network. J. Geophys. Res.: Space Phys,2005,110:A05308 被引 5    
15.  Mazzella A J. Autonomous estimation of plasmasphere content using GPS measurements. Radio Sci,2002,37(6):41-45 被引 3    
16.  Mazzella A J. GPS determinations of plasmasphere TEC. International Beacon Satellite Symposium,2007 被引 1    
17.  Rama Rao P V S. On the validity of the Ionospheric Pierce Point(IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann. Geophys,2006,24:2159-2168 被引 2    
18.  Ciraolo L. Calibration errors on experimental slant Total Electron Content(TEC) determined with GPS. J. Geodesy,2007,81(2):111-120 被引 27    
19.  Hernandez-Pajares M. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geodesy,2009,83(3/4):263-275 被引 58    
20.  Zhang D H. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci. China: Tech. Sci,2014,57(1):67-79 被引 11    
引证文献 1

1 侯维君 单接收机GNSS数据组合硬件延迟的联合求解方法 空间科学学报,2017,37(5):601-607
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号