帮助 关于我们

返回检索结果

基于梯形算子的AFM驱动器非对称迟滞性校正
Asymmetric hysteresis calibration of AFM actuator based on keystone operator

查看参考文献22篇

王栋   于鹏 *   周磊   刘柱   董再励  
文摘 原子力显微镜(AFM)通常采用压电陶瓷(PZT)作为驱动器以实现纳米尺度的观测和操作。然而,PZT 自身的迟滞非线性会对 AFM 观测质量和操作精度产生很大影响。基于 Prandtl-Ishlinskii(PI)模型的前馈控制方法可对 PZT 的迟滞非线性进行补偿,但传统 PI 模型无法消除 PZT 的非对称迟滞性的影响。针对这个问题,提出一种基于梯形算子的非对称迟滞模型,并可用系统辨识方法获取逆模型参数,该方法可有效实现具有非对称迟滞特性驱动器的前馈补偿控制。AFM 系统实验证明,该模型可有效减小非对称迟滞性导致的建模误差,基于该模型的前馈迟滞补偿控制可有效提高 AFM 的扫描成像质量。
其他语种文摘 Piezoelectric (PZT) actuator is often used in atomic force microscope to realize nano-scale observation and manipulation. However,the intrinsic hysteresis non-linearity of PZT strongly affects observation quality and manipulation accuracy. Prandtl-Ishlinskii (PI) model based feedforward controller can compensate the hysteresis non-linearity of PZT,but the conventional PI model cannot eliminate the effect of asymmetric hysteresis. Aiming to solve the problem,an asymmetric hysteresis model based on keystone operator is proposed. Parameters of inverse model are obtained through system identification method,and the feedforward calibration is implemented based on the inverse model. Experiment in AFM system shows that modeling errors caused by asymmetric hysteresis are effective reduced by the proposed hysteresis model,and imaging quality of the custom-built AFM is improved by feedforward hysteresis compensation based on the model.
来源 仪器仪表学报 ,2015,36(1):32-39 【核心库】
关键词 非对称 PI 模型 ; 梯形算子 ; 原子力显微镜 ; 压电陶瓷 ; 迟滞性前馈校正 ; 逆模型直接辨识
地址

中国科学院沈阳自动化研究所, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0254-3087
学科 机械、仪表工业;自动化技术、计算机技术
基金 国家自然科学基金青年基金 ;  国家863计划 ;  中国科学院科研装备研制
文献收藏号 CSCD:5353294

参考文献 共 22 共2页

1.  Krohs F. Towards automated nanoassembly with the atomic force microscope:A versatile drift compensation procedure. Journal of Dynamic Systems,Measurement,and Control,2009,131(6):061106 被引 4    
2.  焦念东. 具有力觉与视觉反馈的交互式纳米操作系统. 机器人,2006,28(3):279-284 被引 2    
3.  张江波. 一种具有纳米定位精度的四自由度微动平台的研制. 机器人,2003,25(3):213-216 被引 1    
4.  王学亮. 运放对压电陶瓷驱动电路系统精度影响的研究. 电子测量技术,2014,37(10):33-36 被引 5    
5.  陈俊. 压电驱动器驱动电源设计. 国外电子测量技术,2014,33(4):48-53 被引 4    
6.  Ang W T. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE / ASME Transactions on Mechatronics,2007,12(2):134-142 被引 19    
7.  王湘江. 迟滞动态模型辨识. 仪器仪表学报,2009,30(5):1042-1048 被引 4    
8.  Yen P L. Hysteresis compensation and adaptive controller design for a piezoceramic actuator system in atomic force microscopy. Asian Journal of Control,2012,14(4):1012-1027 被引 1    
9.  Leang K K. Feedback-linearized inverse feedforward for creep,hysteresis,and vibration compensation in afm piezoactuators. IEEE Transactions on Control Systems Technology,2007,15(5):927-935 被引 13    
10.  Iyer R V. Control of hysteretic systems through inverse compensation. IEEE Contrl Systems,2009,29(1):83-99 被引 5    
11.  张春雷. 前馈控制算法校正相移微动台非线性运动. 电子测量与仪器学报,2014,28(8):879-884 被引 8    
12.  Clayton G M. A review of feedforward control approaches in nanopositioning for high-speed SPM. Journal of Dynamic Systems,Measurement,and Control,2009,131(6):061101 被引 13    
13.  Liu Y. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order maxwell resistive capacitor approach. Smart Materials and Structures,2013,22(11):115020 被引 4    
14.  Ouyang R. Absolute stability analysis of linear systems with duhem hysteresis operator. Automatica,2014,50:1860-1866 被引 2    
15.  Zhou M L. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the krasnosel'skii-pokrovskii model. PloS one,2014,9(5):e97086 被引 3    
16.  Li Z. Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for preisach model. IEEE Transactions on Automation Science and Engineering,2014,11(2):613-619 被引 9    
17.  Al Janaideh M. Prandtl-ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Physica B:Condensed Matter,2012,407(9):1365-1367 被引 1    
18.  Al Janaideh M. A generalized prandtl-ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Materials and Structures,2009,18(4):045001 被引 4    
19.  Dong R L. A modified prandtl-ishlinskii modeling method for hysteresis. Physica B:Condensed Matter,2009,404(8):1336-1342 被引 2    
20.  Jiang H. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. Ultrasonics,Ferroelectrics and Frequency Control,IEEE Transactions on,2010,57(5):1200-1210 被引 17    
引证文献 6

1 刘艳梅 基于显微视觉的亚像素压电陶瓷驱动特性测量 仪器仪表学报,2015,36(5):1163-1169
被引 4

2 黄强先 动态原子力显微镜悬臂高阶谐振相位特性研究 电子测量与仪器学报,2016,30(9):1411-1417
被引 4

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号