帮助 关于我们

返回检索结果

环境减灾卫星多光谱CCD影像自动几何精纠正与正射校正系统
Auto-registration and orthorectification system for the HJ- 1A/B CCD images

查看参考文献30篇

边金虎 1   李爱农 1 *   雷光斌 1   张正健 1   吴炳方 2  
文摘 我国环境减灾光学卫星(HJ)多光谱CCD影像由于具有高时空分辨率、大幅宽等优势,能够提供同一区域不同生长阶段的植被信息,是提取具有生态学意义土地覆盖及开展植被生理生态参量反演的重要数据源之一。然而,目前该数据产品的几何定位不准确及山区地形畸变误差使其难以满足应用需求。高定位精度是遥感影像信息提取、参数反演与应用分析的前提,遥感影像的几何精纠正与正射校正是遥感数据预处理面临的首要问题。在分析国内外卫星影像自动化处理系统研究现状的基础上,结合HJ CCD影像幅宽大的特点,构建了 HJ CCD影像的自动几何精纠正与正射校正处理系统。与目前商业软件相比,自动几何精纠正与正射校正处理系统采用了自动化的控制点搜索与过滤方法,能有效提高控制点选取的效率与精度。同时,结合DEM数据,系统自动拟合卫星飞行路径并纠正由偏离星下观测导致的山体位移。系统应用结果表明,自动几何精纠正和正射校正系统能够有效的提高处理效率,节省人力和时间成本。该系统已被成功应用于全国生态十年(2000—2010年)变化遥感调查与评估专项土地覆盖遥感监测的环境减灾卫星多光谱遥感影像预处理工作。
其他语种文摘 Time-series remote sensing data can provide vegetation information in different stages in one growing period, which is very helpful for the understanding of the dynamic of land cover. As the basic data source of ChinaCover, the multi-spectral CCD images of HJ constellation have the same 30m spatial resolution and visible to near infrared band as other earth resource satellite. It can provide 2 days temporal resolution for there are two satellites named HJ- 1A and HJ- 1B with 180 degree phase differences and each satellite has 4 days temporal resolution. It is an important data source for the ecological land cover classification and eco-parameter inversion. However, incorrect geolocation caused by the satellite motion along the roll, pitch, yaw direction and the pixel displacement caused by the topographical variations at the off-nadir viewing angle are the bottlenecks when using the massive amount of HJ data. High precision space coordinates is the basic information to guarantee the information extraction, geostatistics analysis and to combine images with other geographic information. The geo-registration and orthorectification is the first issue facing in the pre-processing procedure for the remote sensing images. The newly launched small constellation of environmental and disaster mitigation (HJ-1A/B) are developed for the frequent natural disasters and environmental problems in China. It has been widely applied in the monitoring of the natural disasters, evaluating of the healthy condition of eco-environment and retrieval of surface parameters for its high spatio-temporal resolution and wide coverage. In order to satisfy the immense data processing requirements,this study constructed an auto-registration and orthorectification system for the HJ- 1A/B CCD images according to the data characters. Compared with the general commercial software, the system of this study adopted an effectual method to kick out bad tie points to improve the efficiency and accuracy for the selection of tie points. At the same time,this system can fit the nadir tracking path for satellite to correct the pixel displacement caused by off-nadir viewing of topography. The accuracy of this system is evaluated from the validation points which automatically searched from the result and base image, and the validation points are grouped into four sub-regions in order to make a more objective validation for each region. According to statistics of the control points and validation points, the mean error before registration is 188.4m, and standard deviation error is 144.55m. After registration and orthorectification, the mean error and standard deviation error decreased to 40.59m and 21. 39m separately. The systematic errors in the original images have been successfully eliminated in the final orthorectified results according to the comparison of spatial error distribution of validation points. The orbit operation rules for HJ1A/B will introduce the distortion on the geometric and spectral characters, and will further influence the time-series images construction because of the reduced overlay images in one revisit cycle. Cloud contamination is the main factors affected the tile points search and the coupled cloud detection algorithm and geometric correction algorithm will increase the geometric correction accuracy for cloudy satellite images and make them more useful. This system has been extensively used in the pre-processing procedure of HJ- 1A/B CCD images for the LUCC mapping for the remote sensing survey and assessment project of the National Ecological Environment Decade of Change (2000—2010).
来源 生态学报 ,2014,34(24):7181-7191 【核心库】
DOI 10.5846/stxb201310122446
关键词 环境减灾卫星 ; 几何精纠正 ; 正射校正 ; 自动化
地址

1. 中国科学院水利部成都山地灾害与境研究所, 成都, 610041  

2. 中国科学院遥感与数字地球研究所, 北京, 100094

语种 中文
文献类型 研究性论文
ISSN 1000-0933
学科 环境质量评价与环境监测
基金 环保部“生态十年”专项 ;  中国科学院“百人计划”项目 ;  四川省“百人计划”项目 ;  中国科学院战略性先导科技专项 ;  中国科学院知识创新工程重要方向项目 ;  国家自然科学基金项目
文献收藏号 CSCD:5321287

参考文献 共 30 共2页

1.  陈鹏飞. 基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究. 自然资源学报,2010,25(7):1122-1131 被引 22    
2.  Chen J. Mapping rice planting areas in southern China using the China Environment Satellite data. Mathematical and Computer Modelling,2011,54(3/4):1037-1043 被引 4    
3.  赵少华. 基于环境减灾小卫星(HJ-1B)的地表温度单窗反演研究. 光谱学与光谱分析,2011,31(6):1552-1556 被引 23    
4.  黄彦. 基于遥感与模型耦合的冬小麦生长预测. 生态学报,2011,31(4):1073-1084 被引 11    
5.  于冰洋. 宽刈幅多光谱影像正射纠正技术研究. 国土资源遥感,2010(3):31-35 被引 2    
6.  Bian J H. Auto-registration and orthorecification algorithm for the time series HJ-1A/B CCD images. Journal of Mountain Science,2013,10(5):743-753 被引 1    
7.  Gao F. Automated registration and orthorectification package for Landsat and Landsat-like data processing. Journal of Applied Remote Sensing,2009,3(1):033515 被引 11    
8.  Huang C Q. Development of time series stacks of Landsat images for reconstructing forest disturbance history. International Journal of Digital Earth,2009,2(3):195-218 被引 7    
9.  Chander G. Revised Landsat- 5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677 被引 111    
10.  Singh A. Postlaunch corrections for thematic mapper 5 (TM-5) radiometry in the thematic mapper image-processing system (Tips). Photogrammetric Engineering and Remote Sensing,1985,51(9):1385-1390 被引 2    
11.  Chander G. L5 TM Radiometric Recalibration Procedure Using the Internal Calibration Trends from the NLAPS Trending Database. Proc. SPIE 7081, Earth Observing Systems XIII,2008:7081 被引 1    
12.  Justice C O. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing,1998,36(4):1228-1249 被引 67    
13.  Passot X. VEGETATION image processing methods in the CTIV. Proceedings of VEGETATION,2000,2:3-6 被引 1    
14.  沈照庆. 高光谱海洋遥感影像处理系统集成与应用研究. 海洋测绘,2009,29(2):49-52 被引 1    
15.  朱素云. 海洋二号有效载荷微波散射计数据处理系统的设计. 遥感技术与应用,2007,22(2):152-154 被引 2    
16.  汪承义. 遥感影像流程化处理系统的设计与实现. 测绘科学,2006,31(6):105-106, 88-88 被引 2    
17.  徐玉湄. 海洋卫星数据处理系统的设计与实现. 海洋测绘,2012,32(4):54-56 被引 1    
18.  王文芳. 卫星地面站接收与处理系统关键流程分析. 信息技术,2011(9):34-37, 41-41 被引 1    
19.  杨仁忠. 通用遥感卫星快视处理系统技术研究. 遥感信息,2009(5):32-35 被引 1    
20.  贾福娟. 环境减灾-la、lb卫星宽覆盖多光谱CCD相机技术. 航天器工程,2009,18(6):37-42 被引 11    
引证文献 3

1 杨珂含 青藏高原湖泊面积动态监测 地球信息科学学报,2017,19(7):972-982
被引 8

2 徐鑫 利用Google Earth和SRTMGL1进行高分辨率遥感影像正射校正 测绘通报,2018(8):62-67
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号