帮助 关于我们

返回检索结果

硼在共存水蒸气-富硼熔体之间分配的实验研究及其地质意义
Experimental study on boron distribution between coexisting water vapor and boron-rich melt and its geological implications

查看参考文献52篇

张生 1 *   陈根文 1   Seward T M 2   王玉荣 1   胡光黔 3  
文摘 硼作为一种常用的地球化学指示剂和示踪剂,对研究俯冲带岩石学过程、岩浆-热液分异作用、火山活动以及稀有元素、铜、金的成矿机制具有重要意义。硼具有高水溶性和挥发性,它在气体中的分配、迁移能力和存在形式有助于理解含硼矿物的形成条件、流体化学组成的演化趋势、硼同位素的分馏效应和成矿金属的富集机理。本文在200~350℃、0.19~3.43 MPa条件下实验研究了B_2O_3-H_2O体系中硼在共存水蒸气和富硼熔体(液体)之间的分配,平衡时气相中的B_2O_3含量为1.06%~32.35%。200℃、250℃、300℃和350℃时硼在气体-熔体之间的表观分配系数分别为0.035、0.042、0.20和0.33,即随温度上升,硼在含水气相中的分配和迁移能力增强。含水的富 B 熔体与硼酸稀溶液体系的气体-液体分配系数变化不大,表明B_2O_3-H_2O±NaCl 体系中硼的气-液分配能力受液体或熔体中硼含量的影响较小,而主要与温度有关。经热力学分析,350℃、0.19~1.74 MPa条件下水蒸气中的气态硼物种可能为H_3BO_3和HBO_2,可以预计随水蒸气压力的升高, H_2O的配位数将会增大, H_3BO_3或其他可能的气态物种H_3BO_3·H_2O会变得更为重要。某些火山活动区可见天然硼酸结壳(升华壳)的形成,灼热和干燥的火山岩石表面有利于硼酸从气相中凝析和沉淀。本实验结果表明,某些富硼酸的火山喷气孔气体的形成可能与地下高温火山岩浆(岩体)中存在因液态不混溶作用或晚期出溶作用产生的含水富硼的残余熔体或流体有关,熔体的去气作用或流体的减压相分离导致含水气相的产生,硼则随之大量分配至含水气体中并喷出地表。
其他语种文摘 As a common geochemical indicator and tracer, boron is of significance for the study of petrologic processes in subduction zone, magmatic-hydrothermal differentiation, volcanic activity and mineralizing mecha-nism of rare elements, copper and gold. Boron is highly water-soluble and volatile, its capacity of distribution and transport and species in vapor phase are helpful for understanding the formation of boron-bearing minerals, evolution trend of chemical composition of fluid, fractionation effect of boron isotope and metallogenic mechanism of ore-forming metals. The distribution of boron between coexisting water vapor and melt (or liquid) in B_2O_3-H_2O system was studied experimentally at temperatures from 200 ℃ to 350℃ and pressures from 0.19 MPa to 3.43 MPa. The equilibrated contents of B_2O_3 in the vapor phase range from 1.06% to 32.35%. The apparent distribution coefficients of boron between vapor and melt at 200℃, 250℃, 300℃and 350℃are 0.035, 0.042, 0.20 and 0.33, respectively, show an increasing potential of partition and transport of boron in vapor with temperature. The general variation in distribution coefficients doesn’t seem to be so large between systems of hydrous boron-rich melt and dilute boric acid solution, suggesting the capacity of boron distribution between vapor and liquid in the B_2O_3-H_2O system may be affected slightly by the content of boron in the melt or liquid, but remarkably by the temperature. According to the result of thermodynamic approach, the gaseous species of boron in water vapor at 350℃and 0.19~1.74 MPa are H_3BO_3 and HBO2 probably. It is predicted that the coordination number of water will increase with the pressure of water vapor, and hence H_3BO_3 or other possible species such as H_3BO_3·H_2O become more important. Sassolite encrustation (or sublimates) occurs in some volcano areas, the hot and dry surface of volcanic rocks is favorable for the vapor deposition of boric acid from the exhalations. Our experimental results suggest that some fumarolic gases rich in boric acid are probably related to hydrous boron-concentrated residual melt or fluid derived from liquid immiscibility or late stage exsolution in the underground volcanic magmas of high temperature. The degassing process of the residual melt or the phase separation of fluid accompanied with decompression results in the production of aqueous vapor phase, consequently boron distributes into the vapor in substantial quantities.
来源 地球化学 ,2014,43(6):583-583 【核心库】
关键词 ; 挥发性 ; 分配系数 ; 气态物种 ; 火山喷气 ; 天然硼酸
地址

1. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640  

2. 惠灵顿维多利亚大学,地理、环境与地球科学学院, 新西兰, 惠灵顿, 600  

3. 中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 610640

语种 中文
文献类型 研究性论文
ISSN 0379-1726
学科 地质学
基金 国家自然科学基金 ;  国家科技攻关新疆305项目
文献收藏号 CSCD:5315617

参考文献 共 52 共3页

1.  Cerny P. Geochemical and petrogenic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochem,1992,7(5):393-416 被引 23    
2.  Grew E S. Boron Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy,1996:1-862 被引 1    
3.  Thomas R. Determination of the H_3BO_3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. Am Mineral,2002,87(1):56-68 被引 7    
4.  Leeman W P. Geochemistry of boron and its implications for crustal and mantle processes. Rev Mineral,1996,33(1):645-707 被引 6    
5.  London D. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochim Cosmochim Acta,1987,51(3):403-420 被引 22    
6.  Peretyazhko I S. Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia). Chem Geol,2004,210(1/4):91-111 被引 5    
7.  Taylor M C. Vapor-phase boric acid in quartz-hosted fluid inclusions from a miarolitic elbaite sub-type, complex rare-element pegmatite, southern California. 16th Int Min Assoc,1994:405-406 被引 1    
8.  Williams A E. Mass spectrometric identification of boric acid in fluid inclusions in pegmatite minerals. Geochim Cosmochim Acta,1996,60(18):3435-3443 被引 2    
9.  Slack J F. Tourmaline associations with hydrothermal ore deposits. Rev Mineral,1996,33(1):559-643 被引 3    
10.  Sillitoe R H. Geologic, mineralogic and fluid inclusion studies relating to the origin of copper-bearing tourmaline breccia pipes, Chile. Econ Geol,1971,66(7):1028-1041 被引 6    
11.  Sillitoe R H. Porphyry tin deposits in Bolivia. Econ Geol,1975,70(5):913-927 被引 12    
12.  Olade M A. Nature of volatile element anomalies at porphyry copper deposits, Highland Valley, B.C. Canada. Chem Geol,1977,20(3):235-252 被引 2    
13.  Bruggeman A. Separation of boric acid from PWR waste by volatilization during evaporation. Sep Sci Technol,1997,32(1/4):737-757 被引 3    
14.  Cohen P. Water Coolant Technology of Power Reactors (2nd ed),1980:214-267 被引 1    
15.  Kostylkov I G. Steam extraction of boric acid from the products of the sulfuric acid decomposition of Solongo borate ores. J Appl Chem USSR,1976,49(7):1474-1476 被引 1    
16.  Kanzaki T. Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-jima, Japan. Geochim Cosmochim Acta,1979,43(11):1859-1863 被引 6    
17.  Smith C L. Concentrations of arsenic, antimony, and boron in steam and steam condensate at the Geysers, California. J Volcan Geotherm Res,1987,32(4):329-341 被引 4    
18.  Bischoff J L. Phase separation in seafloor geothermal systems: An experimental study of the effects on metal transport. Am J Sci,1987,287(10):953-978 被引 1    
19.  Berndt M E. Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim Cosmochim Acta,1990,54(8):2235-2245 被引 3    
20.  Liebscher A. Liquidvapor fractionation of boron and boron isotopes: Experimental calibration at 400 ℃/23 MPa to 450 ℃/42 MPa. Geochim Cosmochim Acta,2005,69(24):5693-5704 被引 6    
引证文献 5

1 张生 钨的气态迁移与岩浆一热液成矿作用:实验研究及其成矿学意义 地质科学,2015,50(3):898-910
被引 2

2 张生 离子选择电极法测定水热气体中的硼含量及硼的气态迁移能力研究 岩矿测试,2016,35(4):358-365
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号