帮助 关于我们

返回检索结果

pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响
Influence of pH,ionic strength,and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles

查看参考文献28篇

张瑞昌 1   章海波 2   涂晨 2   骆永明 3 *  
文摘 本文初步探讨了不同pH、离子强度及电解质种类对纳米氧化锌(ZnO NPs)稳定性(聚集沉降和溶解)的影响.沉降实验表明,pH 越靠近零电荷点(~ pH 9.2),ZnO NPs 聚集体尺寸越大,沉降速度越快,稳定性越低; 中性pH 条件下,随着离子强度的增加,ZnO NPs ζ 电位绝对值减小,聚集体尺寸相应变大,沉降速度加快,稳定性降低.中性pH 时ZnO NPs ζ 电位为正值,阴离子较阳离子更易使ZnO NPs 聚集沉降,且SO_4~(2-)的影响远大于Cl~-.溶解实验显示,pH 2—11,Zn~(2+)都会释放到溶液中,pH < 7.5,ZnO NPs 溶解量< 5%; pH < 6, 超过60%的Zn~(2+)释放到溶液中.中性条件下,离子强度越高,ZnO NPs 越易溶解,且Ca~(2+)对纳米氧化锌溶解的促进作用强于Na~+.这表明离子对纳米氧化锌溶解的促进可能源于阳离子与颗粒表面的离子交换机制.
其他语种文摘 Because of the widespread production and utilization,zinc oxides nanoparticles (ZnO NPs) are inevitably released into soil and may generate adverse biological effects on organisms. The stability of ZnO NPs significantly affects their mobility and ecotoxicity and thus has been widely concerned. This study assessed the stability (aggregation,sedimentation and dissolution) of ZnO NPs influenced by different pH,ionic strength and electrolyte type. The results of sedimentation experiment showed that the absolute zeta potential decreased when the pH of nanoparticles suspension was closer to point of zero change (~ pH 9. 2),which resulted in larger aggregate size, faster sedimentation and lower stability of ZnO NPs. Absolute zeta potential of ZnO NPs decreased with the increase of ionic strength,which led to larger particle size and faster sedimentation rate of ZnO NPs in neutral pH. Due to the positive charge on the surface,the influence of anions on ZnO NPs aggregation was more significant than that of cations,and the effect of SO_4~(2-) was greater than that of Cl~-. The results of dissolution experiments showed that zinc ions could be released into the aqueous phase at pH from 2 to 11. When pH was higher than 7. 5,less than 5% of zinc was released,while when pH was lower than 6,over 60% of zinc was released. The dissolution of ZnO NPs was investigated under the condition of different electrolyte types at neutral pH. The results indicated that the solubility of ZnO NPs increased with ionic strength,and the effect of Ca~(2+) on the dissolution of ZnO NPs was greater than that of Na~+. This result implied that ion exchange between cations and zinc ions on the surface of ZnO NPs might have facilitated the dissolution of the nanoparticles.
来源 环境化学 ,2014,33(11):1821-1827 【核心库】
关键词 纳米氧化锌 ; 离子强度 ; pH ; 聚集 ; 溶解
地址

1. 南京土壤研究所, 中国科学院土壤环境与污染修复重点实验室, 南京, 210008  

2. 烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 烟台, 264003  

3. 南京土壤研究所, 中国科学院土壤环境与污染修复重点实验室;;中国科学院海岸带环境过程与生态修复重点实验室, 南京, 210008

语种 中文
文献类型 研究性论文
ISSN 0254-6108
基金 国家自然科学基金面上项目 ;  国家自然科学基金重点项目
文献收藏号 CSCD:5292491

参考文献 共 28 共2页

1.  张长波. 土壤污染物源解析方法及其应用研究进展. 土壤,2007,39(2):190-195 被引 19    
2.  Wang Z L. Zinc oxide nanostructures:growth,properties,and applications. Journal of Physics:Condensed Matter,2004,16:R829-R858 被引 83    
3.  Ma H B. Ecotoxicity of manufactured ZnO nanopartilces-A review. Environmental Pollution,2013,172:76-85 被引 17    
4.  魏绍东. 纳米氧化锌的现状与发展. 化工中间体,2006,11:6-14 被引 1    
5.  Gottschalk F. Modeled environmental concentrations of engineered nanomaterials (TiO_2,ZnO,Ag,CNT, Fullerenes) for different regions. Environmental Science & Technology,2009,43(24):9216-9222 被引 109    
6.  Badawy A M E. Impact of Environmental Conditions (pH,Ionic Strength,and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environmetal Science & Technology,2010,44:1260-1266 被引 28    
7.  Chen K L. Influence of humic acid on the aggregation kinetics of fullerence (C_(60)) nanoparticles in monovalent and divalent electrolyte solution. Journal of Colloid and Interface Science,2007,309:126-134 被引 37    
8.  Ballousha M. Aggregation and surface properties of iron oxide nanoparticles:Influence of pH and natural organic matter. Environmental Toxicology and Chemistry,2008,27(9):1875-1882 被引 8    
9.  Chen K L. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental Science & Technology,2006,40:1516-1523 被引 16    
10.  French R A. Influence of ionic strength,pH,and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology,2009,43:1354-1359 被引 28    
11.  Bian S W. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments Influence of pH,Ionic Strength,Size,and Adsorption of Humic Acid. Langmuir,2011,27:6059-6068 被引 22    
12.  Adams L K. Comparative eco-toxicity of nanoscale TiO_2,SiO_2,and ZnO water suspensions. Water Research,2006,40(19):3527-3532 被引 78    
13.  Aruoja V. Toxicity of nanoparticles of CuO,ZnO and TiO_2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment,2009,407(4):1461-1468 被引 66    
14.  Mudunkotuwa I A. Dissolution of ZnO nanoparticles at circumneutral pH:A study of size effects in the presence and absence of citric acid. Langmuir,2012,28(1):396-403 被引 4    
15.  Reed R B. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry,2012,31(1):93-99 被引 6    
16.  Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles. The Journal of Physical Chemistry B,1998,102(40):7764-7769 被引 17    
17.  Molina R. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles. Chemosphere,2011,83:545-551 被引 3    
18.  Zhang Y. Stability of commercial metal oxide nanoparticles in water. Water Research,2008,42(8/9):2204-2212 被引 28    
19.  Zhang Y. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research,2009,43(17):4249-4257 被引 31    
20.  Zhou D X. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Research,2010,44(9):2948-2956 被引 6    
引证文献 8

1 王宁 水环境中纳米氧化锌的环境行为及生物毒性研究进展 环境化学,2016,35(12):2528-2534
被引 5

2 方婧 天然水体中多壁纳米碳管对纳米氧化锌颗粒团聚与沉降行为的影响 环境科学学报,2017,37(6):2143-2151
被引 0 次

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号