帮助 关于我们

返回检索结果

微钻取样-TIMS/MC-ICPMS 和 LA-MC-ICPMS 分析矿物岩石~(87)Sr/~(86)Sr比值的技术比较
A Comparison of Microdrilling-TIMS/MC-ICPMS and LA-MC-ICPMS for Micro-sample Sr Isotope Measurement

查看参考文献50篇

文摘 微区Sr同位素体系相对于传统全岩Sr同位素研究,可以揭示样品自身存在的不均一性,更好地反映样品经历的地质过程,已被广泛应用于各种地质研究领域,如研究壳幔相互作用、岩浆起源和演化,岩浆体系开放性研究,沉积盆地物源示踪及气候环境研究。准确测定Rb - Sr同位素比值是应用该同位素体系的前提。微钻取样-热电离质谱/多接收电感耦合等离子体质谱(TIMS/MC -ICPMS)和激光剥蚀多接收电感耦合等离子体质谱(LA -MC-ICPMS)作为分析地质样品微区Sr同位素组成的有效手段,已经得到了较为广泛的应用。两种技术在样品制备、干扰校正和质谱测试等方面各具优势和不足。微钻取样-TIMS/ MC-ICPMS的最大优势是可获得高精度的Sr同位素数据(外精度优于100 ×10~(-6), 2SD);但由于需要进行化学处理,流程繁琐耗时(约10天),实验周期较长,同时需要严格控制化学流程空白,且取样直径(200 ~ 2000 μm)和取样深度(100~2000 μm)较大,空间分辨率较低,但是该方法可以对高Rb样品(如钾长石)进行有效分析。LA -MC - ICPMS的最大优势是样品制备简单,数小时即可完成,且分析效率高,根据样品Sr含量的大小激光束斑直径多在60~300 μm之间变化,其空间分辨率较前一种方法高,可在短时间内对大量样品进行分析。但由于不能进行化学分离,分析过程中存在多种干扰(如Rb、Ca、Kr和REs等),影响了测试的精度(约200 × 10~(-6),2SD)和准确度(约150×10~(-6))。该方法目前只能对高Sr低Rb的样品(如斜长石、磷灰石等)进行有效分析,而对于干扰元素含量较高的样品目前无法应用。本文认为,对于微钻取样法,应将改进化学流程作为重点研究方向,提高化学处理效率,同时改善微钻取样法的取样技术,减小取样直径和深度以提高空间分辨率;对于激光剥蚀法,重点突破Kr、Rb和二价REEs等干扰校正问题,提高干扰元素含量较高的样品的分析精度和准确度,同时需要提高仪器灵敏度以满足低Sr含量样品的分析要求。
其他语种文摘 Compared to the traditional strontium isotope analytical method,a micro-sample strontium isotope system study can reveal the heterogeneity of analyzed samples and is widely used in various fields of geology,such as crust-mantle interaction, genesis and evolution of magmas, open magma systems, tracing provenance of sedimentary basin and climate research. Accurate measurement of Rb-Sr isotopic ratios is the premise to apply Sr isotope in these research fields. Two detailed and widely used analysis methods for micro-sample Sr isotope measurement are microdrilling-TIMS/MC-ICPMS and LA-MC-ICPMS. These two methods have different advantages and disadvantages in sample preparation, interference correction and measurement in mass spectrometry. The greatest advantage of microdrilling-TIMS/MC-ICPMS is that this technique can acquire high quality data (external precision is better than 100 × 10~(-6),2SD). However the tedious chemical separation is very time-consuming (about 10 days) and the chemical procedure blank must be critical to low level. The large sampling depth (100 - 2000 μm) and diameter (200 - 2000 μm) reduce the spatial resolution. However, with chemical separation this method can effectively measure samples with high Rb content. Simple sample preparation and fast analysis are the most outstanding advantages of LA-MC-ICPMS which can analyze lots of samples in a much shorter time than that of microdrilling-TIMS/MC-ICPMS. The laser spot size is mainly from 60 to 300 μm. Based on Sr contents in samples, the method of LA-MC-ICPMS improved spatial resolution, compared to microdrilling-TIMS/MC-ICPMS technique. However, without chemical separation, many kinds of interferences (e. g. Rb, Ca, Kr and REEs) hinder this technique to obtain high quality data (external precision is about 200 × 10 ~(-6), 2SD and accuracy is about 150 × 10 ~(-6)). LA-MC-ICPMS is only suitable for high Sr and low Rb samples, instead of samples with high content of interferences. Further studies are required for the microdrilling-TIMS/MC-ICPMS method to improve the efficiency of chemical separation,also microdrilling technology with increasing of spatial resolution by reducing spot diameter and depth. Meanwhile, a better solution for interferences of Kr,Rb and REEs is needed for LA-MC-ICPMS in order to improve precision and accuracy of high interference samples. Instrumental sensitivity improvement is also needed to satisfy Sr isotope measurement for samples with relative low Sr content.
来源 岩矿测试 ,2014,33(5):615-624 【扩展库】
关键词 锶同位素 ; 微区分析 ; 微钻 ; 热电离质谱/多接收电感耦合等离子体质谱 ; 激光剥蚀多接收电感耦合等离子体质谱
地址

中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0254-5357
学科 化学
基金 国家自然科学基金
文献收藏号 CSCD:5239325

参考文献 共 50 共3页

1.  Steiger R H. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters,1977,36(3):359-362 被引 324    
2.  Faure G. Strontium Isotope Geology,1972:1-188 被引 4    
3.  Christensen J N. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochimica et Cosmochimica Acta,1995,59(24):5191-5197 被引 59    
4.  Glodny J. Crystallization and very rapid exhumation of the youngest Alpine eclogites (Tauern Window,Eastern Alps) from Rb/Sr mineral assemblage analysis. Contributions to Mineralogy and Petrology,2005,149(6):699-712 被引 3    
5.  Siebel W. Sr isotope systematics of K-feldspars in plutonic rocks revealed by the Rb-Sr microdrilling technique. Chemical Geology,2005,222(3):183-199 被引 7    
6.  Gimenez Filho A. U-Pb dating and Rb-Sr isotope geochemistry of the eastern portion of the trees corregos batholith, Ribeira Fold Belt Sao Paulo. Brazilian Journal of Geology,2008,30(1):045-050 被引 1    
7.  Zhu X Y. Zircon U-Pb and K-feldspar megacryst Rb-Sr isotopic ages and Sr-Hf isotopic composition of the Mesozoic Heyu pluton, eastern Qingling orogen,China. Lithos,2013,156:31-40 被引 10    
8.  Jackson M G. Strontium isotopes in melt inclusions from Samoan basalts: Implications for heterogeneity in the Samoan plume. Earth and Planetary Science Letters,2006,245(1):260-277 被引 6    
9.  Tepley Iii F J. Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion,Scotland. Contributions to Mineralogy and Petrology,2003,145(5):628-641 被引 2    
10.  Zhang H F. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-,trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology,2002,144(2):241-254 被引 282    
11.  Ren Z Y. Geochemical differences of the Hawaiian shield lavas: Implications for melting process in the heterogeneous Hawaiian plume. Journal of Petrology,2009,50(8):1553-1573 被引 14    
12.  Christensen J N. Time scales of large volume silicic magma systems: Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff, Long Valley,California. Contributions to Mineralogy and Petrology,1993,113(1):100-114 被引 1    
13.  Charlier B L. Rapid open-system assembly of a large silicic magma body: Time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contributions to Mineralogy and Petrology,2008,156(6):799-813 被引 5    
14.  Font L. Sr and Pb isotope micro-analysis of plagioclase crystals from Skye lavas: An insight into open-system processes in a flood basalt province. Journal of Petrology,2008,49(8):1449-1471 被引 1    
15.  Francalanci L. Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli volcano, southern Italy. Journal of Petrology,2005,46(10):1997-2021 被引 1    
16.  Davidson J. Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth and Planetary Science Letters,2001,184(2):427-442 被引 17    
17.  Gao J F. Magma mixing in the genesis of the Kalatongke dioritic intrusion: Implications for the tectonic switch from subduction to post-collision, Chinese Altay, NW China. Lithos,2013,162/163:236-250 被引 10    
18.  Hemming S R. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: ~(40) Ar/~(39) Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction. Earth and Planetary Science Letters,1998,164(1/2):317-333 被引 3    
19.  Wei G J. Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering. Chemical Geology,2013,343:67-75 被引 13    
20.  Hori M. Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and ~(87) Sr/~(86) Sr of a stalagmite developed in southwestern Japan during 18.0-4.5 ka. Chemical Geology,2013,347:190-198 被引 4    
引证文献 3

1 刘文刚 高Rb/Sr比值地质样品中Sr同位素的快速分离及高精度测试 分析化学,2019,47(7):1054-1060
被引 1

2 朱志勇 自动分离提纯系统的研制及其在同位素分析测试中的应用 岩矿测试,2020,39(3):384-390
被引 2

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号