帮助 关于我们

返回检索结果

黄河三角洲芦苇湿地生态系统碳、水热通量特征
Carbon,water and heat fluxes of a reed (Phragmites australis) wetland in the Yellow River Delta, China

查看参考文献60篇

李玉 1   康晓明 1   郝彦宾 1 *   丁恺 1   王艳芬 1   崔骁勇 1   梅旭荣 2  
文摘 利用涡度相关法对黄河三角洲芦苇湿地生态系统进行了连续两年的通量观测,对2009—2010年生长季芦苇湿地的净生态系统碳交换量(NEE),感热通量(Hs)和潜热通量(LE)数据进行了分析。结果表明,在日尺度上,芦苇湿地NEE 日变化特征表现为两个CO_2吸收高峰,分别出现在11:00和16:00左右,其特点是在午间出现了碳交换通量的降低。CO_2吸收的日最大值在两个生长季出现的时间有所不同,分别出现在2009年7月(-0.30 mg CO_2 m~(-2) s~(-1))和2010年6月(-0.37 mg CO_2 m~(-2) s~(-1))。 CO_2排放的日最大值两个生长季均出现在9月,分别为0.19和0.25 mg CO_2 m~(-2)s~(-1)。Hs 和LE 的日动态均为单峰型,极值都出现在中午前后,生长季生态系统的能量消耗主要以潜热为主,且在日尺度上,热通量和NEE 有显著的负相关关系。在季节尺度上,芦苇湿地生长季具有明显的碳汇功能,2009年生长季生态系统白天固定354.63 g CO_2 / m~2,同时期夜间释放159.24 g CO_2 / m~2,净CO_2吸收量为-195.39 g CO_2 / m~2。2009年整个生长季生态系统总初级生产力(GPP)为-651.13 g CO_2 / m~2,生态系统呼吸(Re)为455.74 g CO_2 / m~2,系统表现为碳汇。路径分析表明:光合有效辐射(PAR)显著影响NEE 的日动态(R~2 =0.46—0.84),而 NEE 的季节动态主要受土壤温度的影响,降水和PAR 的影响次之。
其他语种文摘 Wetlands are regarded as one of the largest ‘unknowns'regarding future carbon(C)dynamics and greenhouse gas fluxes in the context of global change and climate policy-making. To understand the dynamics of carbon cycling of wetland ecosystem, we used an eddy covariance technique to measure the net ecosystem carbon dioxide(CO_2)exchange(NEE, positive or negative values of NEE represent net losses or gains of C, respectively, for the ecosystem), sensible heat flux(Hs)and latent heat flux(LE)between vegetation and the atmosphere at a reed wetland ecosystem in the Yellow River Delta during the periods of two growing seasons in 2009 and 2010. The total amount of rainfall in 2009(571.4 mm)was higher than the annual average(551 mm). In contrast, precipitation in 2010(523.5 mm)was significantly lower than average. The results from 2-year eddy tower observations showed that there was a dual peak in diurnal pattern of NEE fluxes for the reed wetland, which occurred at about 11:00 and 16:00, respectively. There were two different temporal patterns for the maximum diurnal uptake values of CO_2 in 2 years. The maximum diurnal uptake values of CO_2 were -0.30 mg CO_2 m~(-2) s~(-1)(July, 2009)and -0.37 mg CO_2 m~(-2)s~(-1)(June, 2010),respectively. The maximum diurnal emitting values of CO_2 were0.19 and 0.25 mg CO_2 m~(-2)s~(-1), respectively, and both occurred in September for 2 years. The diurnal patterns of Hs and LE were both single peaks, and their peak values both occurred at noon. The maximum latent heat flux was higher than the sensible heat flux, and the latent heat flux was the primary consumption component for net radiation during both two years. In diurnal scale, the heat fluxes were strongly negatively correlated to NEE fluxes(R~2≥0.5, P<0.0001). On the seasonal scale, the reed wetland was a strong C sink during the growing season. In 2009, the wetland ecosystem fixed 354.63 g CO_2 m~(-2) in daytime of the whole growing season, and meanwhile it released 159.24 g CO_2 / m~2 in nighttime. Approximate 651.13 g CO_2 / m~2 was fixed by gross primary production(GPP), and 455.74 g CO_2 / m~2 were released as ecosystem respiration(Re), which resulted in a strong sink of atmospheric CO_2 with -195.39 g CO_2 / m~2 sequestered in 2009 growing season based on the observed data. Path analysis results showed that the fluctuation of diurnal NEE fluxes was closely related to the photosynthetic active radiation(PAR)(R~2 = 0.46-0.84)。However, soil temperature had the greatest effect on seasonal dynamics of ecosystem CO_2 exchange during the growing seasons at the study site, higher than the contributions of the other environmental factors such as precipitation and PAR. Our results strongly suggested that the combination of temperature, precipitation and PAR, as well as phonological stage of vegetation, control the C dynamics of reed wetland ecosystem. Therefore, an accurate representation of these parameters is extremely valuable for developing accurate and predictive wetland C cycle models and for the success of forecasting carbon budgets of reed wetlands.
来源 生态学报 ,2014,34(15):4400-4411 【核心库】
DOI 10.5846/stxb201212051750
关键词 芦苇湿地 ; 涡度相关 ; 碳通量 ; 显热通量 ; 潜热通量 ; 降水量
地址

1. 中国科学院大学生命科学学院, 北京, 100049  

2. 中国农业科学院农业环境与可持续发展研究所, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 1000-0933
基金 国家自然科学基金项目
文献收藏号 CSCD:5211924

参考文献 共 60 共3页

1.  Huntingford C. Contributions of carbon cycle uncertainty to future climate projection spread. Tellus B,2009,61(2):355-360 被引 9    
2.  高俊琴. 水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响. 水土保持学报,2008,22(3):126-131 被引 20    
3.  Smith L C. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science,2004,303(5656):353-356 被引 28    
4.  于贵瑞. 全球变化与陆地生态系统碳循环和碳蓄积,2003:43-96 被引 7    
5.  宋长春. 湿地生态系统碳循环研究进展. 地理科学,2003,23(5):622-628 被引 44    
6.  Zhou L. Annual cycle of CO_2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany,2009,91(2):91-98 被引 36    
7.  Suyker A E. Season-long measurement of carbon dioxide exchange in a boreal fen. Journal of Geophysical Research,1997,102(D24):29021-29028 被引 4    
8.  Lafleur P M. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles,2003,17(2):1036-1049 被引 11    
9.  Bonneville M C. Net ecosystem CO_2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology,2008,148(1):69-81 被引 17    
10.  Dusek J. Influence of summer flood on the net ecosystem exchange of CO_2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology,2009,149(9):1524-1530 被引 6    
11.  Griffis T J. Scaling net ecosystem CO_2 exchange from the community to landscape-level at a subarctic fen. Global Change Biology,2000,6(4):459-473 被引 7    
12.  Hirota M. Carbon dioxide dynamics and controls in a deepwater wetland on the Qinghai-Tibetan Plateau. Ecosystems,2006,9(4):673-688 被引 21    
13.  Zhang F W. CO_2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica,2008,28(2):453-462 被引 11    
14.  Brix H. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?. Aquatic Botany,2001,69(2/4):313-324 被引 84    
15.  Huang G H. Methane(CH4) emission from a natural wetland of Northern China. Journal of Environmental Science and Health,2005,40(6/7):1227-1238 被引 3    
16.  Baldocchi D. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society,2001,82(11):2415-2434 被引 253    
17.  Hutley L B. The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany,2005,53(7):663-675 被引 3    
18.  Kang X M. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. Journal of Soils and Sediments,2011,11(4):562-576 被引 4    
19.  Falge E. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology,2002,113(1/4):53-74 被引 57    
20.  Sanderman J. Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochemical Cycles,2003,17(2) 被引 8    
引证文献 15

1 罗琪 黄河源高寒湿地-大气间水热和碳交换通量日变化特征的观测分析 高原气象,2017,36(3):667-674
被引 6

2 王金龙 博斯腾湖人工和天然芦苇湿地土壤呼吸动态变化规律及其影响因素 农业环境科学学报,2017,36(1):167-175
被引 5

显示所有15篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
王艳芬 0000-0001-5666-9289
崔骁勇 0000-0001-7592-5866
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号