帮助 关于我们

返回检索结果

高寒草甸植被细根生产和周转的比较研究
Estimation of root production and turnover in an alpine meadow: comparison of three measurement methods

查看参考文献56篇

吴伊波 1   车荣晓 2   马双 2   邓永翠 3   朱敏健 1   崔骁勇 2 *  
文摘 植物根系是陆地生态系统重要的碳汇和养分库,细根周转过程是陆地生态系统地下部分碳氮循环的核心环节,在陆地生态系统如何响应全球变化中起着关键作用。在全球变化敏感地区之一的青藏高原,对该地区的主要植被类型矮嵩草草甸同时采用根钻法、内生长袋法和微根管法3种观测方法研究细根生产和周转速率,并探讨了极差法、积分法、矩阵法和Kaplan-Meier法等数据处理方法对计算值的影响。研究结果显示:在估算细根净初级生产力时,根钻法宜采用积分法,内生长袋法宜选用矩阵法;由此进一步以最大细根生物量为基础,根钻法和内生长袋法估测的细根年周转速率分别为0.36 a~(-1)和0.52 a~(-1),内生长袋法的估算结果是根钻法的1.44倍。对于微根管法,将其观测得到的细根长度转换为单位面积的生物量值后,采用积分法计算出细根周转速率为0.84 a~(-1),远高于传统方法的估算结果;若采用Kaplan-Meier生存分析方法,则计算出的细根周转速率更高达3.41 a~(-1)。
其他语种文摘 Plant roots are the most important carbon (C) sink and nutrient pool in the terrestrial ecosystem. Root turnover is the key process in belowground C and nitrogen cycles, and it profoundly affects how belowground ecosystems respond to global climate change. Therefore, an accurate estimation of the plant root turnover rate is crucial for reliable predictions of the structure and function of ecosystems in the future. Research on fine roots and the methods to analyze them have been hot spots in the field of root ecology. However, the suitability of the different methods, and the comparability of the results obtained from them, have rarely been assessed based on data from one study site. Grassland root systems, especially fine root turnover, have also been poorly studied—these topics have remained largely unexplored for herbaceous plants in China. The Qinghai-Tibetan Plateau in western China was one of the first areas to be affected by climate change, because its ecosystems are fragile and sensitive to changes in climatic conditions. The study was conducted in a Kobresia humilis meadow, one of the dominant vegetation types on the Qinghai-Tibetan Plateau. Previous studies suggested that meadow ecosystems play the most important role in both uptake and storage of C in the plateau. The ecosystem is considered to be an active CO_2 sink. Roots may be one of the most important components of this sink, because root systems have a large biomass for storage and translocation of C into soil. To assess the suitability of the different measurement methods, we used sequential coring, ingrowth cores, and a minirhizotron to investigate the root production and turnover rates. To test the effects of the different calculation methods on the value of the root production and turnover rate, we used the max-min, integral, decision matrix, and Kaplan-Meier methods to calculate the root production and turnover rate from the measurements obtained using the three methods. The results of the comparative analysis showed that the integral calculation method was suitable to estimate the root production using data from the sequential coring method, while the decision matrix method was more suitable for calculations using data obtained by the ingrowth core method. In 2009, the root turnover rate was determined to be 0.36 a~(-1) using the sequential coring method, but 1.44 times higher, 0.52 a~(-1), using the ingrowth core method. The calculation methods more strongly affected the results obtained using a minirhizotron. The turnover rate determined using the integral method was 0.84 a~(-1), 2.33 times that determined using the sequential coring method and 1.62 times that determined using the ingrowth core method. The root turnover rate was estimated at 3.41 a~(-1) by Kaplan-Meier analysis, much higher than the values obtained using the sequential coring and ingrowth core methods. In conclusion, at this study site, the lowest root turnover rate was determined by the sequential coring method, the mid-range rate was determined using the ingrowth core method, and the highest rate was determined using a minirhizotron. The methods of data analysis will also affect the variations among results obtained using these three methods. Our results provide a basis to understand the roles of root production and turnover in the Kobresia humilis meadow and in the C and nutrient cycles in this ecosystem.
来源 生态学报 ,2014,34(13):3529-3537 【核心库】
DOI 10.5846/stxb201307031831
关键词 矮嵩草草甸 ; 细根周转 ; 根钻法 ; 内生长袋法 ; 微根管法
地址

1. 宁波大学建筑工程与环境学院, 宁波, 315211  

2. 中国科学院大学生命科学学院, 北京, 100049  

3. 南京师范大学, 虚拟地理环境教育部重点实验室, 南京, 210046

语种 中文
文献类型 研究性论文
ISSN 1000-0933
基金 国家自然科学基金 ;  浙江省自然科学基金
文献收藏号 CSCD:5193912

参考文献 共 56 共3页

1.  Santantonio D. Estimating fine-root production and turnover from biomass and decomposition data: a compartmental- flow model. Canadian Journal of Forest Research,1987,17(8):900-908 被引 23    
2.  Hendrick R L. Patterns of fine root mortality in two sugar maple forests. Nature,1993,361(6407):59-61 被引 60    
3.  Vogt K A. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research,1986,15:303-377 被引 166    
4.  杨丽韫. 长白山原始阔叶红松林细根分布及其周转的研究. 北京林业大学学报,2005,27(2):1-5 被引 43    
5.  Jackson R B. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America,1997,94(14):7362-7366 被引 219    
6.  Clark D A. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications,2001,11(2):371-384 被引 37    
7.  Trumbore S E. The secret lives of roots. Science,2003,302(5649):1344-1345 被引 40    
8.  Tom M S. Mineral control of soil organic carbon storage and turnover. Nature,1997,389(6647):170-173 被引 69    
9.  贺金生. 全球变化下的地下生态学:问题与展望. 科学通报,2004,49(13):1226-1234 被引 108    
10.  王娓. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究,2008,25(1):90-97 被引 38    
11.  Majdi H. Measuring fine root turnover in forest ecosystems. Plant and Soil,2005,276(1/2):1-8 被引 22    
12.  Milchunas D G. Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems,2009,12(8):1381-1402 被引 4    
13.  Tierney G L. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research,2002,32(9):1692-1697 被引 12    
14.  Robinson D. Scaling the depths: below-ground allocation in plants, forests and biomes. Functional Ecology,2004,18(2):290-295 被引 4    
15.  Black K E. Differences in root longevity of some tree species. Tree Physiology,1998,18(4):259-264 被引 12    
16.  Burton A J. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia,2000,125(3):389-399 被引 172    
17.  Gill R A. Global patterns of root turnover for terrestrial ecosystems. New Phytologist,2000,147(1):13-31 被引 193    
18.  Matamala R. Effects of elevated atmospheric CO_2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology,2000,6(8):967-979 被引 17    
19.  Matamala R. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science,2003,302(5649):1385-1387 被引 54    
20.  Norby R J. Fine-root production dominates response of a deciduous forest to atmospheric CO_2 enrichment. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9689-9693 被引 26    
引证文献 31

1 严月 草原生态系统植物地下生物量分配及对全球变化的响应 植物生态学报,2017,41(5):585-596
被引 15

2 孙庆龄 三江源植被净初级生产力估算研究进展 地理学报,2016,71(9):1596-1612
被引 32

显示所有31篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
崔骁勇 0000-0001-7592-5866
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号