帮助 关于我们

返回检索结果

利用卫星两行轨道根数反演热层密度
Research on Thermospheric Densities Derived from Two-line Element Sets

查看参考文献21篇

文摘 两行轨道根数(TLEs)是基于一般摄动理论产生的用于预报地球轨道飞行器位置和速度的一组轨道参数,通过求解大气阻力微分方程,可反演出热层大气密度.本文选取近圆轨道CHAMP卫星和椭圆轨道Explorer 8卫星,以两行轨道根数数据为基础,计算反弹道系数,并根据不同轨道特征采用两种不同反演方法对热层大气密度进行研究.结果表明,这两种方法反演得到的大气密度与实测值均符合较好,其中CHAMP卫星的反演结果和经验模式值相对于实测值的误差分别为7.94%和13.94%, Explorer 8卫星的误差分别为9.04%和14.32%.相比模式值,利用两行轨道根数数据反演的热层大气密度更接近于实测值,说明该方法可以作为获取大量可靠大气密度数据的一种有效途径.
其他语种文摘 Two-line Orbital Element Sets (TLEs) consist of mean orbital elements at epoch, along with the NORAD (North American Aerospace Defence Command) catalog number, international designator, epoch and additional fitting parameters. These information can be used to derive thermospheric densities through integration of differential equation for mean motion. For near-circular orbit satellites, derived thermospheric density can be seen as real density because of their stable orbit height, while for elliptical orbit satellites, thermospheric density at perigee and apogee can be different as much as several orders. So different methods were applied to derive thermospheric density according to different satellite orbits. This paper chooses CHAMP and Explorer 8 satellites, whose orbits are respectively near-circular and elliptical, as our research cases. The inverse ballistic coefficient B (B-factor) was firstly derived based on TLEs data, then thermospheric densities were derived with different methods according to different orbit characters. Finally, a comparison was made among TLEs-derived density, NRLMSISE-00 model density and observed (or reference) density. The result shows that the average error of TLEs-derived density and empirical model density with respect to observed value for CHAMP is 7.94% and 13.94% respectively, and the average error with respect to reference value for Explorer 8 is 9.04% and 14.32% respectively. This result indicates that TLEs-derived density is closer to the real density than empirical model density, and this method provides an effective way to obtain extensive and reliable atmosphere density data.
来源 空间科学学报 ,2014,34(4):426-433 【核心库】
关键词 两行轨道根数 ; 反弹道系数 ; 近圆轨道和椭圆轨道 ; 热层密度反演
地址

中国科学院空间科学与应用研究中心, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0254-6124
学科 地球物理学
基金 国家973计划 ;  航天飞行动力学技术重点实验室开放基金项目
文献收藏号 CSCD:5188327

参考文献 共 21 共2页

1.  Berger C. Improvement of the empirical thermosphere model DTM: DTM-94-A comparative review of various temporal variations and prospects in space geodesy applications. J. Geod,1998,72(3):161-178 被引 29    
2.  Bruinsma S. The DTM-2000 empirical thermosphere model with new data assimilation and constrains at lower boundary: accuracy and properties. J. Atmos. Solar-Terr. Phys,2003,65:1053-1070 被引 21    
3.  Hedin A. MSIS-86 thermospheric model. J. Geophys. Res,1987,92(A5):4649-4662 被引 47    
4.  Hedin A E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res,1991,96(A2):1159-1172 被引 73    
5.  Picone J M. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res,2002,107(A12):1468 被引 141    
6.  Rhoden E. The influence of geomagnetic and solar variabilities on lower thermosphere density. J. Atmos. Solar-Terr. Phys,2000,62:999-1013 被引 15    
7.  Storz M F. High accuracy satellite drag model. Adv. Space Res,2005,36:2497-2505 被引 22    
8.  苗娟. 基于实时观测数据的大气密度模式修正. 空间科学学报,2011,31(4):459-466 被引 12    
9.  Picone J M. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets. J. Geophys. Res,2005,110:A03301 被引 19    
10.  Lean J L. Thermospheric densities derived from spacecraft orbits: Application to the Starshine satellites. J. Geophys. Res,2006,111:A04301 被引 5    
11.  Emmert J T. Global change in the thermosphere: Compelling evidence of a secular decrease in density. J. Geophys. Res,2004,109:A02301 被引 5    
12.  Emmert J T. A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res,2009,114:A06315 被引 8    
13.  Emmert J T. Thermospheric global average density trends, 1967_2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett,2008,35:L05101 被引 8    
14.  杨维廉. 两行根数的精度评估. 航天器工程,2009,18(3):8-13 被引 7    
15.  刁宁辉. 基于SGP4模型的卫星轨道计算. 遥感信息,2012,27(4):64-70 被引 13    
16.  刘卫. SGP4/SDP4模型预报可靠性分析. 天文研究与技术,2011,8(2):128-131 被引 9    
17.  胡敏. 平均轨道根数与密切轨道根数的互换. 飞行器测控学报,2012,31(2):77-81 被引 4    
18.  Hedin A E. Empirical wind model for the upper, middle, and lower atmosphere. J. Atmos. Terr. Phys,1996,58(13):1421-1447 被引 29    
19.  King-Hele D G. Satellite Orbits in an Atmosphere: Theory and Applications,1987 被引 1    
20.  Bowman B R. True satellite ballistic coefficient determination for HASDM. AIAA/AAS Astrodynamics Specialist Conference,2002 被引 3    
引证文献 7

1 苗娟 基于星载高精度GPS观测数据的大气密度反演 地球物理学报,2016,59(10):3566-3572
被引 2

2 常欣卓 基于非线性自回归神经网络的局部大气密度预测方法 中国科学技术大学学报,2017,47(12):1015-1022
被引 1

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号