帮助 关于我们

返回检索结果

NO冷却率在连续磁暴中对热层密度的影响
Influence of nitric oxide cooling rates on thermospheric density during a succession of geomagnetic storms

查看参考文献24篇

刘舒莳 1   龚建村 2   刘四清 2   苗娟 2   李晓松 3  
文摘 基于CHAMP卫星加速度计数据,对2002年4月和2004年11月两个连续磁暴事件期间400 km高度热层大气密度时空变化特征进行了分析,结果表明,地磁扰动相近的连续磁暴发生时,热层密度对第一个磁暴的响应幅度明显大于后续磁暴;磁暴间歇期有时会出现密度低值;磁暴恢复相,热层密度先于ap指数快速恢复至暴前水平,甚至更低;热层大气经验模式NRLMSISE00的预测结果中没有包含这些现象.利用TIMED卫星SABER辐射计数据进一步分析同时段100~155 km高度NO冷却率的变化特点,NO冷却率在暴时的增大滞后热层密度2~6 h;磁暴恢复相,NO冷却率保持在较高水平,弛豫时间远大于热层密度.暴时增强的NO冷却率及其缓慢的恢复是导致热层密度响应幅度变小的原因,间歇期是否出现热层密度异常低值也与NO冷却率的增幅有关.
其他语种文摘 With the accelerometer data from CHAMP satellite during continuous geomagnetic storms occurring in April 2002 and November 2004, the Spatiotemporal evolution of thermospheric density at 400 km height has been analyzed. Results show that: during continuous geomagnetic storms, thermospheric density responds little to subsequent storm and lower density is found on interval between serial storms. Thermospheric density decreases more rapidly than ap index during storms recovery phase and become lower than pre-storm period. However, these abnormal phenomenons do not appear in the results of NRLMSISEOO atmospheric empirical model. Furthermore, using data from SABER on TIMED satellite nitric oxide cooling rates variations at 100~155 km height has been studied. It is found that the change of the NO cooling rates lags behind the thermospheric density by 2~6 h. During post-storm period, NO cooling rates remain higher than pre-storm period and the relaxation time is much longer than thermospheric density. Analysis suggests that the elevated NO cooling rates and its slow recovery are plausible causes for these thermospheric density abnormal phenomenons above.
来源 地球物理学报 ,2014,57(6):1700-1708 【核心库】
DOI 10.6038/cjg20140602
关键词 NO冷却率 ; 热层密度 ; 磁暴
地址

1. 北京航天飞行控制中心, 航天飞行动力学技术国家级重点实验室, 北京, 100094  

2. 中国科学院空间科学与应用研究中心, 北京, 100190  

3. 中国国防科技信息中心, 北京, 100142

语种 中文
文献类型 研究性论文
ISSN 0001-5733
学科 地球物理学
基金 国家自然科学基金项目 ;  国家973计划 ;  航天飞行动力学技术重点实验室开放课题基金
文献收藏号 CSCD:5188046

参考文献 共 24 共2页

1.  Barth C A. Nitric oxide in the lower thermosphere. Planet. Space Sci,1992,40(2/3):315-336 被引 2    
2.  Barth C A. Global observations of nitric oxide in the thermosphere. Journal of Geophysical Research,2003,108(A1):1027-1027 被引 2    
3.  Barth C A. Joule heating and nitric oxide in the thermosphere. Journal of Geophysical Research,2009,114(A5):A05301 被引 2    
4.  Bruinsma S. Atmospheric density derived from CHAMP/STAR accelerometer observations. Planet. Space Sci,2004,52(4):297-312 被引 35    
5.  Bruinsma S. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res,2006,111(A6):A06303 被引 11    
6.  Burns A G. On the mechanisms responsible for high-latitude thermospheric composition variations during the recovery phase of a geomagnetic storm. J. Geophys. Res,1989,94(A12):16961-16968 被引 1    
7.  Kamide Y. Two-step development of geomagentic storms. J. Geophys. Res,1998,103(A4):6917-6921 被引 13    
8.  Lei J H. Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. J. Geophys. Res,2011,116(A3):A03306 被引 3    
9.  Lei J H. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J. Geophys. Res,2012,117(A3):A03314 被引 3    
10.  Liu H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res,2005,110(A9):A09S29 被引 15    
11.  刘舒莳. 基于经验正交分析法的暴时热层大气密度时空分布规律. 地球物理学报,2013,56(10):3236-3245 被引 2    
12.  Lu G. On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res,2010,115(A5):A05306 被引 4    
13.  Maeda S. Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18-24, 1984. J. Geophys. Res,1989,94(A12):16869-16883 被引 1    
14.  Maeda S. Heat budget of the thermosphere and temperature variations during the recovery phase of a geomagnetic storm. J. Geophys. Res,1992,97(A10):14947-14957 被引 1    
15.  Mlynczak M G. The natural thermostat of nitric oxide emission at 5. 3μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett,2003,30(21):2100-2100 被引 6    
16.  Mlynczak M G. Energy transport in the thermosphere during the solar storms of April 2002. J. Geophys. Res,2005,110(A12):A12S25 被引 1    
17.  Mlynczak M G. Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere. Geophys. Res. Lett,2008,35(5):L05808 被引 3    
18.  Reigber C. CHAMP mission status. Advances in Space Research,2002,30(2):129-134 被引 67    
19.  Siskind D E. The response of thermospheric nitric oxide to an auroral storm: 1. Low and middle latitudes. J. Geophys. Res,1989,94(A12):16885-16898 被引 2    
20.  Solomon S C. Auroral production of nitric oxide measured by the SNOE satellite. Geophys. Res. Lett,1999,26(9):1259-1262 被引 2    
引证文献 1

1 程胡华 大气密度对运载火箭飞行的qα_(max)精度影响及建模分析 宇航学报,2021,42(3):378-389
被引 4

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号