帮助 关于我们

返回检索结果

微纳米尺度流动实验研究的问题与进展
The problems and progress in the experimental study of Micro/Nano-scale flow

查看参考文献42篇

文摘 微纳米实验流体力学研究的流动特征尺度在1mm~1nm范围,处于宏观流动到分子运动的过渡区。连续介质力学与量子力学这两个经典理论的衔接,提出了诸如连续性假设适用性、边界滑移等基本理论问题。同时从微纳米尺度研究界面处液/固/气的耦合,化学、电学性质对流动的影响值得关注。微纳米实验测量仪器融入了力、电等测量手段,要求测量空间精度达到nm量级,力的测量精度达到pN,时间分辨率达到ns。本文围绕连续性假设适用性、边界滑移、微纳米粒子布朗运动及微尺度涡旋测量等问题,介绍了Micro/Nano PIV、示踪粒子流场显示等技术应用于微纳流场观测的进展与难点。目前微纳米流动测量仍然沿着经典流体力学测量“小型化”的思路开展,而纳尺度的测量期待着新的实验方法与技术的提出。
其他语种文摘 The micro/nanoscale experimental fluid mechanics studies the fluid flow with the typical dimension from about 1mm to 1nm, which is also the transition range from the macroscopic flow to molecular motion. The combination of the two classical theories: the continuum mechanics and the quantum mechanics, pusts forward some basic theoretical problems like the validity of the continuity hypothesis and the boundary slip. In the mean time, due to the coupling of the liquid/solid/gas phases in micro/nanoscale, it is worthy considering the influence of interfacial chemistry and electric properties on the flow. Therefore, micro/nano experimental devices should integrate force and electricity measurements, and require a nanometer measuring space resolution, a pN force precision and a nano-second time resolution. This paper focuses on the problems of validity of the continuity hypothesis, boundary slip, Brownian motion of micro/nano-particles and micro-vortex flow, and introduces the progresses and difficulties of micro/nano flow measurement by Micro/Nano PIV and micro/nanoscale flow visualization using tracers. Up to date, the study of micro/nano flow is still following the idea of "miniaturization" of the classical fluid mechanics measurement, however, the nano flow measurement urgently needs new techniques and methods.
来源 实验流体力学 ,2014,28(3):1-11 【核心库】
DOI 10.11729/syltlx20140018
关键词 微/纳流动 ; 实验测量 ; Micro/Nano PIV ; 界面
地址

中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190

语种 中文
文献类型 综述型
ISSN 1672-9897
学科 力学
基金 国家自然科学基金 ;  国家973计划 ;  国家自然科学基金
文献收藏号 CSCD:5175710

参考文献 共 42 共3页

1.  李战华. 微流控芯片中的流体流动,2012 被引 31    
2.  Bocquet L. Nanofluidics, from bulk to interfaceds. Chem Soc Rev,2010,39:1073-1095 被引 39    
3.  Sparreboom W. Transport in nanofluidic systems: a review of theorey and applications. New J Phys,2010,12:015004 被引 14    
4.  Meinhart C. PIV measurements in a microchannel flow. Exp Fluids,1999,27:414-419 被引 27    
5.  Huang P. Direct measurement of slip velocities usihng three dimensional total internal reflection velocimetry. J Fluid Mech,2006,566:447 被引 4    
6.  Cottin-Bizonne C. Bounmdary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys Rev Letters,2005,94:056102 被引 18    
7.  Kirby B. Zeta potential of microfluidic substrates. Electrophoresis,2004,25:187-202 被引 11    
8.  Cui H H. Flow characteristics of liquids in microtubes driven by a high pressure. Phys Fluids,2004,16:1803 被引 16    
9.  李战华. 微尺度流动特性. 机械强度,2001,23(4):476-480 被引 16    
10.  Wereley S. Recent advances in micro-particle image velocimetry. Annu REv Fluid Mech,2010,42:557-576 被引 18    
11.  Majumder M. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature,2005,438:44 被引 77    
12.  Holt J. Fast Mass transport through sub-2-nanometer carbon nanotubes. Science,2006,312:1034 被引 6    
13.  Whitby M. Enhanced fluid flow through nanoscale carbon pipes. Nano Letters,2008,8(9):2632-2637 被引 20    
14.  Qin X. Measurement of the rate of water translocation through carbon nanotubes. Nano Letters,2011,11:2173-2177 被引 10    
15.  Kannam S. How fast does water flow in carbon nanotubes. J Chem Phys,2013,138:094701 被引 12    
16.  Vinogradova O. Drainage of a thin film confined between hydrophobic surfaces. Langmuir,1995,11:2213-2220 被引 27    
17.  Merabia S. Heat transfer from nanopaticles: a corresponding state analysis. PNAS,2009,106(36):15113-15118 被引 1    
18.  Navier C. Memoire surles lois du movement des fluids. Mem Acad Sci inst Fr,1823,6:389-416 被引 1    
19.  Neto C. Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys,2005,68(28):59-97 被引 1    
20.  Zheng X. The influence of nano-particle tracers on the slip length measurements by microPTV. Acta Mechanica Sinica,2013,29:411-419 被引 6    
引证文献 7

1 宋付权 纳米阵列中气体驱替液体的流动特征 力学学报,2018,50(3):553-560
被引 2

2 苏军伟 岩石孔隙内地下水流动的微观数值模拟研究 水资源与水工程学报,2019,30(5):7-13,20
被引 0 次

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号