帮助 关于我们

返回检索结果

好氧甲烷氧化菌生态学研究进展
Ecology of aerobic methane oxidizing bacteria (methanotrophs)

查看参考文献94篇

文摘 好氧甲烷氧化菌是以甲烷为碳源和能源的细菌。好氧甲烷氧化菌在自然环境中分布广泛,人类已从土壤、淡水和海洋沉积物、泥炭沼泽、热泉、海水和南极环境分离到甲烷氧化菌的纯培养。好氧甲烷氧化菌可分为14个属,包括研究较为深入的隶属于变形菌门Alpha和Gamma纲的细菌,以及属于疣微菌门的极端嗜热嗜酸甲烷氧化菌。最近,好氧甲烷氧化菌还被发现存在于苔藓类植物(尤其是泥炭苔藓)共生体中,兼性营养好氧甲烷氧化菌也被发现。通过对好氧甲烷氧化菌的分类、生理生化特征、分子生物学检测方法以及微生物生态学中的研究成果的总结与分析,以及对甲烷氧化菌研究所面临的问题进行讨论,以期为今后进一步开展好氧甲烷氧化菌及其在碳循环中的作用研究提供参考。
其他语种文摘 Aerobic methane oxidizing bacteria (methanotrophs) are a fascinating group of bacteria that have the unique ability to grow on methane as their sole carbon and energy source. They appear to be widespread in nature and have been isolated from a number of different environments. There are now 14 recognized genera of methanotrophs belong to two phyla, Proteobacteria and thermoacidiphilic Verrucomicrobia.The former was well studied and separated into two classes, TypeⅠ and TypeⅡ methanotrophs, which belong to Alpha and Gamma Proteobacteria. Extremely thermophilic, acidophilic methanotrophs from the phylum Verrucomicrobia have been isolated, thus expanding both the taxonomic diversity and physiological range of aerobic methanotrophy. The discovery of the facultative methanotroph Methylocella silvestris has changed the view that methanotrophs were obligate organism. They can cooxidize a considerable number of organic compounds and also have considerable potential in biotechnology. A wide variety of methanotrophic symbionts in and on the mosses were recently detected, and showing the global prevalence of this symbiosis. Traditional way used cultivation to enrichment or isolation to study methanotrophs in the environment. Molecular ecology techniques applied in the last few decades have greatly expanded our knowledge of methanotroph ecology. The most obvious marker for detecting methanotrophs in various environments is the 16S rRNA gene, due to the large database of sequences available. Primers and probes targeting different genera or species have been designed and used extensively in combination with polymerase chain reaction (PCR) based clone library analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and fluorescent in situ hybridization (FISH) analysis. Several functional genes have also been used for the detection of methanotrophs in environmental samples, including pmoA (encoding the key subunits of particulate methane monooxygenase), mmoX (encoding the key subunits of soluble methane monooxygenase), mxaF (encoding the key subunits of methanol dehydrogenase), nifH (encoding the dinitrogenase reductase), and genes involved in C1 transfer pathways. To understand the active community of methanotrophs in the environment, stable isotope probing (SIP) techniques have been developed, including DNA-SIP, RNA-SIP, mRNA-SIP, and phospholipid fatty acid (PLFA)-SIP. SIP has also been combined with metagenomics to discover novel methanotrophs. Other very powerful molecular techniques have been developed in the last few years, including microautoradiography (MAR)-FISH, isotope array, Raman-FISH, nano-secondary ion mass spectrometry (NanoSIMS), and microfluidic digital PCR, these techniques can now be used in the analyses of methanotrophs. Both cultivation and cultivation independent molecular methods have been used intensively in last few decades to study the diversity, distribution, and abundance in environments of methanotrophs, such as soils, freshwater, marine sediments, acid peat bogs, hot springs, seawater and extreme environments. In the microcosm of soil, the growth and diversity of methanotrophs are also influenced by several environmental factors. This review highlights recent progress in the research of the taxonomy, of the discovery of novel aerobic methanotrophs, of the biochemistry, of the molecular techniques and the environment impacts on methanotrophs, we also emphasize deficiencies and issues need to be solved in future studies. This review will provide theoretical foundation for future methanotrophic ecology study and explain the key role methanotrophs play in carbon cycle.
来源 生态学报 ,2013,33(21):6774-6785 【核心库】
DOI 10.5846/stxb201207171013
关键词 好氧甲烷氧化菌 ; 微生物生态 ; 分类学地位 ; 多样性 ; 碳循环
地址

中国科学院大学, 北京, 100049

语种 中文
文献类型 综述型
ISSN 1000-0933
学科 环境科学基础理论
基金 国家自然科学基金资助项目
文献收藏号 CSCD:4992256

参考文献 共 94 共5页

1.  IPCC. Climate Change 2007: The physical science basis. Summary for policymakers. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Summary for Policymakers formally approved at the 10th Session of Working Group I of the IPCC 被引 1    
2.  Blake D R. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science,1988,239(4844):1129-1131 被引 21    
3.  Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports,2009,1(5):285-292 被引 63    
4.  Frenzel P. Plant-associated methane oxidation in rice fields and wetlands. Advances in Microbial Ecology,2000:85-114 被引 3    
5.  Reeburgh W S. Global methane biogeochemistry. Treatise on Geochemistry,2003,4:65-89 被引 5    
6.  Roslev P. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology,1996,19(2):105-115 被引 6    
7.  Le Mer J. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology,2001,37(1):25-50 被引 193    
8.  Hanson R S. Methanotrophic bacteria. Microbiology and Molecular Biology Reviews,1996,60(2):439-471 被引 170    
9.  Sohngen N L. Uber Bakterien welche methan kohlenstoffnahrung energiequelle gebrauchen. Zentrabl Bakteriol Parasitenkd Infectionskr,1906,15:513-517 被引 2    
10.  Whittenbury R. Enrichment, isolation and some properties of methane-utilizing bacteria. Journal of General Microbiology,1970,61(2):205-218 被引 39    
11.  Bowman J P. The methanotrophs-the families Methylococcaceae and Methylocystaceae. Prokaryotes,2006,5:266-289 被引 1    
12.  Bowman J P. The methanotrophs-the families Methylococcaceae and Methylocystaceae. The Prokaryotes,1999:1953-1966 被引 1    
13.  Bowman J P. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology,1997,143(4):1451-1459 被引 9    
14.  Bowman J P. Revised taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a proposal that the family Methylococcaceae includes only the group-I Methanotrophs. International Journal of Systematic Bacteriology,1993,43(4):735-753 被引 11    
15.  Bowman J P. The phylogenetic position of the family Methylococcaceae. International Journal of Systematic Bacteriology,1995,45(1):182-185 被引 14    
16.  Dedysh S N. Methylocella species are facultatively methanotrophic. Journal of Bacteriology,2005,187(13):4665-4670 被引 18    
17.  Theisen A R. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecular Microbiology,2005,58(3):682-692 被引 11    
18.  Stoecker K. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America,2006,103(7):2363-2367 被引 17    
19.  Kulichevskaya I S. Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. International Journal of Systematic and Evolutionary Microbiology,2007,57(11):2680-2687 被引 4    
20.  Dunfield P F. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature,2007,450(7171):879-882 被引 39    
引证文献 19

1 刘洋荧 基于功能基因的微生物碳循环分子生态学研究进展 微生物学通报,2017,44(7):1676-1689
被引 43

2 冯小平 盐分对湿地甲烷排放影响的研究进展 生态学杂志,2015,34(1):237-246
被引 6

显示所有19篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
王艳芬 0000-0001-5666-9289
张洪勋 0000-0003-1212-5604
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号