帮助 关于我们

返回检索结果

超声速燃烧与高超声速推进
Supersonic combustion and hypersonic propulsion

查看参考文献109篇

文摘 50多年的努力和曲折经历证明了超声速燃烧冲压发动机概念的可行性.本文对影响超燃冲压发动机技术成熟的主要因素作了扼要的分析.高超声速推进的首要问题是净推力,利用超声速燃烧获得推力遇到各种实际问题的制约,它们往往互相牵制.几次飞行试验表明高超声速飞行需要的发动机净推力仍差强人意,液体碳氢燃料(煤油)超燃冲压发动机在飞行马赫数5上下的加速和模态转换过程,成为高超声速吸气式推进继续发展的瓶颈.研究表明,利用吸热碳氢燃料不仅是发动机冷却的需要也是提高发动机推力和性能的关键举措,燃料吸热后物性改变对燃烧性能的附加贡献对超燃冲压发动机的净推力至关重要.当前,实验模拟技术和测量技术相对地落后,无法对环境、尺寸和试验时间做到完全的模拟.计算流体动力学(Computational Fluid Dynamics,CFD)逐渐成为除实验以外唯一可用的工具,然而,超声速燃烧的数值模拟遇到湍流和化学反应动力学的双重困难.影响对发动机的性能作正确可靠的评估.提出双模态超燃冲压发动机模态转换、吸热碳氢燃料主动冷却燃料催化裂解与超声速燃烧耦合、燃烧稳定性、实验模拟技术与装置、内流场特性和发动机性能测量、数值模拟中的湍流模型、煤油替代燃料及简化机理等研究前沿课题,和未来5~10年重点发展方向的建议.
其他语种文摘 After the long and strenuous efforts covering more than 50 years and the tortuous experiences, feasibility of the scramjet concept has finally been proven. In this paper, the main factors influencing the technical maturity of the scramjet engine are briefly analysed. A matter of utmost concern for this new type of air-breathing engine is the net thrust. The production of engine thrust using supersonic combustion encountered a number of practical requirements which were often found to contradict each other. Several flight tests showed that the net engine thrust was still not as good as expected. The acceleration capability and mode transition of scramjet with liquid hydrocarbon fuels (kerosene) operating at flight Mach numbers about 5 has become the bottleneck preventing scramjet engine from continuing development. Research showed that the use of endothermic hydrocarbon fuels is not only necessary for engine cooling but also a critical measure for improving engine thrust and performance. Changes of thermo-physical-chemical characteristics of endothermic fuels during heat absorption make additional contributions to the combustion performance which is essential to the scramjet net thrust. Currently, the technology of experimental simulation and measurement is still lagging behind the needs. The complete duplication or true similarity of atmospheric flight environment, engine size and test du-ration remains impossible. Therefore, computational fluid dynamics (CFD) has become an important tool besides experiment. However, numerical simulation of supersonic combustion encountered challenges which come from both turbulence and chemical kinetics as well as their interaction. It will inevitably affect the proper assessment of the engine performance. Several frontiers of research in this developing field are pointed out: mode transition in the dual-mode scramjet, active cooling by endothermic hydrocarbon fuel with catalytic cracking coupled with supersonic combustion, combustion stability, experimental simulation and development of test facilities, measurements of the inner flow-field characteristics and engine performance, turbulence modeling, kerosene surrogate fuels and reduced chemical kinetic mechanisms, and so on. Also, directions for future research efforts are proposed and suggestions for the next 5-10 years are given.
来源 力学进展 ,2013,43(5):449-472 【核心库】
DOI 10.6052/1000-0992-13-037
关键词 超声速燃烧 ; 高超声速推进 ; 超燃冲压发动机 ; 吸热碳氢燃料 ; 燃烧稳定性 ; 模态转换
地址

中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1000-0992
学科 航空
文献收藏号 CSCD:4977007

参考文献 共 109 共6页

1.  Anderson G. Progress in hypersonic combustion technology with computation and experiment. AIAA 1990-5254,1990 被引 1    
2.  Baker R T K. Coking problems associated with hydrocarbon conversion processes. ACS, Division of Fuel Chemistry,1996,41:521-524 被引 1    
3.  Ben-Yakar A. Cavity fame-holders for ignition and fame stabilization in scramjet: An overview. Journal of Propulsion and Power,2001,17:869-877 被引 64    
4.  Bezuidenhout J J. Heat flux determination using surface and backface tempera-ture histories and inverse methods. AIAA 2001-3530,2001 被引 1    
5.  Billig F S. Combustion processes in supersonic flow. Journal of Propulsion and Power,1988,4:209-216 被引 5    
6.  Brandstetter A. Experimental investigation of supersonic combustor with strut injector. AIAA 2002-5242,2002 被引 1    
7.  Chen J Y. Development for reduced mechanism for numerical modeling of turbulent combustion. Proceedings of the Numerical Aspects of Reduction in Chemical Kinetics,2011 被引 1    
8.  Choi J J. Large eddy simulation of cavity-stabilized supersonic combustion. AIAA 2009-5383,2009 被引 1    
9.  Choi J Y. Detached eddy simulation dynamics in scramjet combustion. AIAA 2007-5027,2007 被引 1    
10.  Colket M B. Scramjet fuels autoignition study. Journal of Propulsion and Power,2001,17:315-323 被引 16    
11.  Curran E T. Scramjet Propulsion. AIAA 2000,2001 被引 1    
12.  Cutmark E. Combustion enhancement by axial vortices. Journal of Propulsion and Power,1989,5:555-560 被引 1    
13.  Daguat P. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science,2006,32:48-92 被引 49    
14.  Dooley S. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetics phenomena. Combustion and Flame,2012,159:1444-1466 被引 32    
15.  Drummond J P. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor. AIAA Paper, 1991-1914,1991 被引 1    
16.  Edwards T. Liquid fuel and propellant for aerospace propulsion: 1903-2003. Journal of Propulsion and Power,2003,19:1089-1107 被引 77    
17.  Edwards T. Research in Hydrocarbon Fuels for Hy-personics,1996 被引 1    
18.  Erik Axdahl. Study of forebody injection and mixing with application to hypervelocity air-breathing propulsion. AIAA Paper, 2012-3924,2012 被引 1    
19.  Falempin F. LEA flight test program-A first step towards an operational application of high-speed airbreathing propulsion. AIAA 2002-5249,2002 被引 1    
20.  Fan X J. Effects of entry conditions on cracked kerosene-fueled supersonic combustor performance. Combustion Science and Technology,2007,179:2199-2217 被引 10    
引证文献 35

1 段晰怀 基于亚燃的高超声速冲压发动机内流道研究 航空学报,2015,36(1):232-244
被引 4

2 杨越 超声速燃烧数值模拟中的湍流与化学反应相互作用模型 航空学报,2015,36(1):261-273
被引 9

显示所有35篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号