帮助 关于我们

返回检索结果

射孔完井参数对试井理论曲线的影响
Effects of perforated completion parameters on well test type curves

查看参考文献20篇

文摘 射孔完井是石油天然气开采过程中最常用的完井方式之一。对于确定的油气储层,完井方式决定了单井产能大小。一般常用二维裸眼井模型来进行射孔井的试井资料解释及单井产能的确定,但这种方法分析的结果可能存在较大的误差。因此根据射孔完井的特征以及储层渗透率各向异性特征,建立了一种适合于射孔井的三维数值试井模型。利用三维有限元数值方法求解该模型,获得了射孔井的试井理论曲线和压力分布场。通过分析试井理论曲线的特征及压力分布场中的流体三维流动特征,明确了试井理论曲线的6个流动阶段:井筒储存阶段;第一过渡阶段;早期局部径向流阶段;第二过渡阶段;系统径向流阶段;外边界作用阶段。其中,围绕射孔的早期局部径向流阶段是该类井的主要特征。分析了射孔完井参数射孔密度、射孔长度、射孔相位角以及渗透率各向异性等因素对试井理论曲线的影响,为射孔完井设计以及射孔井的试井分析提供理论指导。射孔井的总表皮系数计算结果表明,在一定参数条件下,射孔井可以成为超完善井,深度射孔是提高产量较有效的手段。
其他语种文摘 Perforated completion is one of the most commonly used completion methods in oil and gas development. The single well productivity is largely determined by the completion method for a given oil-gas well. The well test analysis and single well productivity calculation are normally realized by using a 2-D open hole model, however, this approach may cause large errors. Based on properties of perforated completion and permeability anisotropy of reservoirs, a three-dimensional numerical well test model was proposed to analyze the transient flow in perforated vertical wells. With the model, well test type curves and pressure fields of perforated wells are obtained by using the 3-D finite elemnet method (FEM). Through analyses of well test type curves and the three-dimensional flow in the pressure field, six flow phases can be recognized on well test type curves of perforated wells, i.e. wellbore storage, the first transition, early-time partly radial flow around the perforation, the second transition, late-time system radial flow and boundary-dominated flow. Among them the early-time partly radial flow around the perforation is the most important characteristic of perforated wells. Effects of perforated completion parameters, such as perforation density, length, phase angle and permeability anisotropy, on the transient pressure and derivative responses were studied, which provides theoretical guidance to design perforating types and analyze well test data of perforated wells. The calculation result of the total skin factor of perforated wells showed that the productivity of a perforated well may be higher than that of an open hole if the perforation is long enough or the perforation density is high enough. Increasing the perforation length is an effective way to enhance the productivity of a perforated well.
来源 石油学报 ,2013,34(3):528-534 【核心库】
DOI 10.7623/syxb201303016
关键词 射孔井 ; 数值试井 ; 表皮系数 ; 三维有限元 ; 射孔密度 ; 射孔长度 ; 渗透率各向异性
地址

中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0253-2697
学科 石油、天然气工业
基金 国家重大科技专项
文献收藏号 CSCD:4949239

参考文献 共 20 共1页

1.  Harris S D. The effect of perforating on well productivity. Journal of Petroleum Technology,1966,18(4):518-528 被引 2    
2.  Klotz J A. Effect of perforation damage on well productivity. Journal of Petroleum Technology,1974,26(11):1303-1314 被引 4    
3.  Locke S. An advanced method for predicting the productivity ratio of a perforated well. Journal of Petroleum Technology,1981,33(12):2481-2488 被引 4    
4.  Tariq S M. Evaluation of flow characteristics of perforations including nonlinear effects with the finite-element method. SPE Production Engineering,1987,2(2):104-112 被引 2    
5.  Karakas M. Semianalytical productivity models for perforated completions. SPE Production Engineering,1991,6(1):73-82 被引 3    
6.  Yildiz T. Assessment of total skin factor in perforated wells. SPE Reservoir Evaluation and Engineering,2006,9(1):62-76 被引 3    
7.  Hagoort J. An analytical model for predicting the productivity of perforated wells. Journal of Petroleum Science and Engineering,2007,56(4):199-218 被引 5    
8.  Atkinson C. Flow performance of perforated completions. Transport in Porous Media,2009,80(2):305-328 被引 2    
9.  Jamiolahmady M. A new method for productivity calculation of perforated wells in gas condensate reservoirs. Journal of Petroleum Science and Engineering,2011,77(3/4):263-273 被引 4    
10.  Yildiz T. Pressure-transient analysis for perforated wells. SPE Journal,1999,4(2):167-176 被引 1    
11.  Ozkan E. Pressure-transient analysis of perforated slant and horizontal wells.SPE 56421,1999 被引 1    
12.  李治平. 评价射孔完井污染的试井分析方法研究. 天然气工业,1991,11(3):30-34 被引 1    
13.  范学平. 用边界元方法分析射孔完井非稳定渗流问题. 西南石油学院学报,1996,18(3):59-69 被引 1    
14.  唐愉拉. 有限元方法在射孔完井中的应用. 石油学报,1989,10(3):48-58 被引 12    
15.  李海涛. 裂缝性油藏射孔完井产能的有限元分析. 石油学报,2001,22(5):63-67 被引 12    
16.  王建平. 各向异性部分射开直井不稳定渗流理论研究. 大庆石油地质与开发,2007,26(3):65-67 被引 5    
17.  陈方方. 双重介质部分射开渗流模型与试井样板曲线. 大庆石油地质与开发,2008,27(6):87-90 被引 4    
18.  姚军. 部分射开井流线数值试井解释模型及压力响应. 石油勘探与开发,2009,36(4):513-518 被引 4    
19.  张涤明. 计算流体力学,1991 被引 11    
20.  唐汝众. 射孔参数对套管强度影响的有限元分析. 石油机械,2010,38(1):32-34 被引 10    
引证文献 5

1 欧阳伟平 污染区对部分打开井井底压力响应的影响 力学学报,2014,46(2):234-240
被引 3

2 张红艳 油井射孔压力测试仪 仪表技术与传感器,2015(8):26-28,32
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

ResearcherID 链接
刘曰武 C-2875-2012
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号