帮助 关于我们

返回检索结果

基于非相干散射雷达和GPS观测研究Millstone Hill地区等离子体层电子含量
An investigation on plasmaspheric electron content derived from ISR and GPS observations at Millstone Hill

查看参考文献16篇

种小燕 1   张满莲 1 *   张顺荣 2   温晋 1   刘立波 1   宁百齐 1   万卫星 1  
文摘 本文尝试结合非相干散射雷达和GPS TEC观测数据提取等离子体层总电子含量(PTEC)。我们首先描述所用的技术方法,然后具体利用了Millstone Hill台站的观测数据研究该地区上空等离子体层总电子含量(PTEC)的变化情况。我们采用变化标高的Chapman函数对非相干散射雷达测得的电子浓度剖面数据进行拟合,然后通过对剖面积分得到100 km到1000 km高度范围的电离层总电子含量。GPS提供的TEC数据为高度达20200 km的总电子含量,两者之差可近似看成等离子体层的电子含量。本文分别选取太阳活动高年(2000, 2002年)和太阳活动低年(2005,2008年)Millstone Hill台站的静日数据进行研究。结果表明,等离子体层电子含量及其所占GPS TEC的比例具有明显的周日变化。PTEC含量在白天高于夜间,而所占GPS TEC的百分比,夜间明显高于白天。太阳活动高年所选月份等离子体层电子含量在4~14 TECU (1TECU=10~(16)el/m~2)范围内变化,夜间所占比例可达60%左右。太阳活动低年所选月份等离子体层电子含量在3~7 TECU范围内变化,所占比例夜间最高可达80%左右。我们所得到的结果与前人基于其它观测手段所得结果在变化趋势上一致,在量级上也大致相当。因此,这从一个侧面证明了我们所用方法的可靠性。非相干散射雷达能够探测包括F2层峰值以下及以上高度的电子浓度,利用这一设备所观测得到的资料来推算电离层电子含量将比前人基于电离层垂测仪观测资料进行的推算更具真实性,由此得到的等离子体层电子含量也将更为接近真实情况。
其他语种文摘 An attempt is made to estimate the plasmaspheric electron content (PTEC) using the data observed from the ISR (Incoherent Scatter Radar) and GPS at Millstone Hill(42.6°N,288.5°E). We first present a brief description on the method we used in this study, then the variation of PTEC is studied. The electron density profile obtained by the ISR at Millstone Hill is fitted using Chapman function with varying scale heights, and then the ISR TEC is calculated as an integral of electron density from 100km to 1000km of the profile. The difference between GPS TEC (which is up to an altitude of 20200 km) and ISR TEC can be taken approximately as the plasmaspheric electron content (PTEC). Data from both high solar activity years (2000 and 2002) and low solar activity years (2005 and 2008) are used for the present study. The results we obtained indicate that both PTEC and the relative contribution of PTEC (to GPSTEC) exhibit obvious diurnal variation patterns, with PTEC being higher during daytime than during nighttime and the relative contribution of PTEC is higher during nighttime than during daytime. PTEC can vary from 4 to 14 TECU (1TECU=10~(16)el/m~2) and the contribution of PTEC to GPS TEC reaches 60% during nighttime in the month of high solar activity level, while in the month of low solar activity, the value of PTEC is generally 3~7 TECU with the highest contribution about 80% at night. The variation pattern and trends in our results are in agreement with those obtained by other researches based on different measurements and techniques, and the magnitude is also agreed. This provides a support to the validity of our method. Unlike the ionosonde/digisonde which can only explore the bottomside ionosphere under the F2 peak, the ISR has the advantage to explore from a low to high altitude range and thus can provide both the bottomside and topside electron density profile. For this reason, the PTEC derived from ISR data (combined with GPS TEC) is more realistic than that from ionosonde data (combined with GPS TEC). This latter approach was often adopted by some former researchers。
来源 地球物理学报 ,2013,56(3):738-745 【核心库】
DOI 10.6038/cjg20130303
关键词 TEC ; 等离子体层 ; 非相干散射雷达 ; GPS TEC ; 电离层
地址

1. 中国科学院地质与地球物理研究所, 中国科学院电离层空间环境重点实验室;;北京空间环境国家野外科学观测研究站, 北京, 100029  

2. Haystack Observatory, Massachusetts Institute of Technology, USA, Westford

语种 中文
文献类型 研究性论文
ISSN 0001-5733
学科 地球物理学
基金 国家自然科学基金 ;  国家重点基础研究发展计划(973计划) ;  国家自然科学基金 ;  中国科学院重点部署项目
文献收藏号 CSCD:4793610

参考文献 共 16 共1页

1.  Kersley L. Comparison of protonospheric electron content measurements from the American and European sectors. Geophys. Res. Lett,1978,5:123-126 被引 1    
2.  Lunt N. The influence of the protonosphere on GPS observations: model simulations. Radio Sci,1999,34(3):725-732 被引 3    
3.  Lunt N. The contribution of the protonosphere to GPS total electron content: experimental measurements. Radio Sci,1999,34(5):1273-1280 被引 2    
4.  Belehaki A. Plasmaspheric electron content derived from GPS TEC and digisonde ionograms. Adv. Space Res,2004,33(6):833-837 被引 3    
5.  Yizengaw E. Global plasmaspheric TEC and its relative contribution to GPS TEC. Journal of Atmospheric and Solar-Terrestrial Physics,2008,70(11/12):1541-1548 被引 3    
6.  Reinisch B W. Deducing topside profiles and Total Electron Content from bottomside ionograms. Adv. Space Res,2001,27(1):23-30 被引 6    
7.  Zhang M L. Comparison among IRI, GPS-IGS and ionogram-derived total electron contents. Adv. Space Res,2006,37(5):972-977 被引 3    
8.  雷久候. 中纬电离层的统计分析与模式化研究[博士论文],2005:18-32 被引 1    
9.  毛田. 基于GPS台网观测的电离层TEC的现报与建模研究[博士论文],2007:28-38 被引 1    
10.  Mannucci A J. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci,1998,33(3):565 被引 78    
11.  Kil H. Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. J. Geophys. Res,2003,108(A11):1391 被引 2    
12.  Liu J. Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. Ann. Geophys,2010,28(3):795-805 被引 4    
13.  Liu L B. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements. J. Geophys. Res,2007,112:A06307 被引 3    
14.  Liu L. Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment. Ann. Geophysicae,2007,25(9):2019-2027 被引 1    
15.  Fox M W. A simple, convenient formalism for electron density profiles. Radio Sci,1994,29(6):1473-1491 被引 1    
16.  Breed A M. Ionospheric total electron content and slab thickness determined in Australia. Radio Sci,1997,32(4):1635-1643 被引 3    
引证文献 5

1 沈格 低太阳活动期间极区ELDI的EISCAT/ESR雷达观测 地球物理学报,2014,57(11):3532-3540
被引 3

2 张满莲 利用COSMIC低轨卫星对GPS信号的顶部TEC观测资料研究等离子体层电子含量的变化特征 地球物理学报,2016,59(1):1-7
被引 1

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号