帮助 关于我们

返回检索结果

基于神经步进激励机制的蛇形机器人环境自适应仿生控制策略
Self-adaptable Biomimetic Control Strategy for Snake Robots Based on Neural Stepping Stimulation Mechanism

查看参考文献20篇

文摘 针对已有的蛇形机器人在环境适应过程中步态调整策略复杂,参数调整时间长的问题,引入神经步进激励机制,提出一种基于多模态中枢模式发生器模型的简单快速的仿生控制策略。构建能够产生蛇形机器人多种步态的多模态中枢模式发生器模型,并基于仿生学原理提出神经步进激励机制。通过对蛇形机器人三种主要步态的运动学分析,得出其运动性能与控制参数之间的关系,利用神经步进激励机制并结合蛇形机器人自身的运动特性建立蛇形机器人环境自适应仿生控制策略。通过仿真将该策略与传统蛇形机器人控制方法进行对比,并利用试验验证了该策略的有效性。
其他语种文摘 Current gaits modification strategy for snake robots to adapt to environment is complex and needs long time to adjust control parameters. By introducing neural stepping stimulation mechanism, a simple and fast biomimetic control strategy is proposed based on the multi-phase central pattern generator (CPG). The multi-phase CPG which produces various snake robots gaits is built. Based on biological study, the neural stepping stimulation mechanism is proposed. Through the kinematic analysis of three major snake robots gaits, the relationship between control parameters and motion performance is obtained. Combined with snake robots locomotion characteristics, the complete snake robots adaptable biomimetic control strategy is built with the neural stepping stimulation mechanism. There is a simulation comparing the performance of this strategy with traditional control method for snake robots and a experiment verifying the control strategy.
来源 机械工程学报 ,2013,49(1):53-62 【核心库】
DOI 10.3901/jme.2013.01.053
关键词 蛇形机器人 ; 中枢模式发生器 ; 环境自适应 ; 仿生控制
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0577-6686
学科 自动化技术、计算机技术
基金 国家自然科学基金资助项目
文献收藏号 CSCD:4743018

参考文献 共 20 共1页

1.  Delcomyn F. Neural basis of rhythmic behavior in animals. Science,1980,210(4469):492-498 被引 26    
2.  Heliot R. Multisensor input for CPG-based sensory-motor coordination. IEEE Transaction on Robotics,2008,24(1):191-195 被引 3    
3.  Kimura H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research,2007,26(5):475-490 被引 41    
4.  Arena P. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Transaction on Systems, Man. and Cybernetics, Part B:Cybernetics,2005,34(4):1823-1837 被引 6    
5.  Crespi A. Online optimization of swimming and crawling in an amphibious snake robot. IEEE Transaction on Robotics,2008,24(1):75-87 被引 21    
6.  Sfakiotakis M. Biomimetic centering for undulatory robots. The International Journal of Robotics Research,2007,26(11/12):1267-1282 被引 2    
7.  Lu Zhenli. Serpentine locomotion of a snake robot controlled by cyclic inhibitory CPG model. IEEE/RSJ International Conference on Intelligent Robots and Systems, August 2-6, 2005,2005:96-101 被引 1    
8.  Wu Xiaodong. Adaptive creeping locomotion of a CPG-controlled snake robot to environment change. Autonomous Robots,2010,28(3):283-294 被引 10    
9.  Sato M. Reinforcement learning for biped locomotion. International Conference on Artificial Neural Networks, August 28-30, 2002,2002:777-782 被引 1    
10.  Inoue K. CPG-based control of a simulated snake robot adaptable to changing found friction. IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29-November 2, 2007,2007:1957-1962 被引 1    
11.  Gans C. Tests on the locomotion of the elongate and limbless reptile ophisaurus apodus (sauna:Anguidae). Journal of Zoology,1990,220(4):517-536 被引 3    
12.  Burdick J. A "sidewinding" locomotion gait for hyper-redundant robots. Advanced Robotics,1995,9(3):195-216 被引 6    
13.  Bernstein N. The co-ordination and regulation of movement,1967 被引 3    
14.  Cohen A H. The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion:A mathematical model. Journal of Mathematical Biology,1982,13:345-369 被引 10    
15.  Tang Chaoquan. A cubic CPG model for snake robot to adapt to environment. IEEE International Conference on Information and Automation, June 20-23, 2010,2010:24-29 被引 1    
16.  Cabelguen J M. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander notophthalmus viridescens. The Journal of Neuroscience,2003,23(6):2434-2439 被引 3    
17.  Hirose S. Biologically inspired robots:Snake locomotors and manipulators,1993 被引 1    
18.  Ma Shugen. Analysis of creeping locomotion of a snake robot. Advanced Robotics,2001,15(2):205-224 被引 13    
19.  Gomez J. Locomotion princeples of 1D topology pitch and pitch-yaw-connecting modular robots. Bioinspriation and Robotics Walking and Climbing Robots,2007 被引 1    
20.  Liljeback P. A simplified model of planar snake robot locomotion. IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010,2010:2868-2875 被引 1    
引证文献 4

1 高琴 基于Hopf振荡器实现的蛇形机器人的步态控制 机器人,2014,36(6):688-696
被引 8

2 高琴 基于振荡器模型的蛇形机器人的步态仿真 系统仿真学报,2015,27(6):1374-1380
被引 4

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号