帮助 关于我们

返回检索结果

黄河源头高寒草甸夏季土壤水热特征及相互关系研究
Research on characteristics and relationship of soil heat and moisture in summer on alpine grassland in Yellow River source region

查看参考文献25篇

文摘 根据青藏高原玛多县2010年6-8月夏季每天24个时次的土壤温湿度、热通量资料,分析了黄河源头高寒草甸夏季土壤温湿度的时空分布特征以及相互作用、土壤温度和热通量的关系;利用Penman公式计算了日蒸散量,分析了与气候因子的相关性。结果表明,黄河源头高寒草甸土壤湿度在夏季各月的日变化上表现出一致的变化趋势,各月、各土层土壤湿度的变化基本一致;各层土壤湿度最高平均值为17.58m3/m~3,出现在7月4日,最低平均值为6.8~3m~3/m~3出现在8月9日;6-8月10cm土壤湿度最大平均值为15.26m~3/m~3,出现在16-17时、最小平均值为14.49m~3/m~3,出现在8时;30cm土壤湿度最大平均值为15.56m~3/m~3,出现在22时、0时,最小平均值为15.32m~3/m~3,出现在11-13时;夏季各月土壤温度在各层变化趋势一致,土壤温度的梯度变化对土壤湿度变化有很大影响;各层土壤温度最高平均值为17.59℃,出现在7月底8月初,最低平均值为4.57℃,出现在6月1日;通过对土壤温度和热通量的分析,得出:6-8月10和30cm土壤热通量变化呈正弦曲线,10cm土壤热通量震荡明显,最大平均值为67.35W/m~2,最小平均值为-21.62 W/m~2,而30cm土壤热通量变化相对平缓,最大平均值为21.33W/m~2,最小平均值为-2.73W/m~2;土壤温度的变化较土壤热通量变化滞后,当土壤热通量下降的时候,土壤温度也在下降;当热通量负值的时候,下层土壤释放热量,是热源;当为正值的时候,下层土壤吸收热量,是热汇。与气候因子的相关分析中得出,对日蒸散量影响显著的气候因子为风速,相关系数为0.8,在0.01水平上显著相关,风速和空气相对湿度是影响日蒸散量变化的主要原因。
其他语种文摘 On the basis of observed data, the spatial-temporal variation characteristics, relationship and interactions between soil temperature,water and soil heat flux are studied. The results shows that there exit same trend everyday on soil moisture in summer at alpine grassland in Yellow River source region. Soil moisture exit same trend in each month in summer. The average maximum value of soil moisture was 17.58 m~3/m~3, and reached in July 4 in each soil layer. The average minimum value of soil moisture was 6.83 m~3/m~3, and appeared in August 9 in each soil layer. The maximum value appeared from 16 to 17 O'clock, which was 15.26 m~3/m~3 in 10 cm soil layer from June to August. The minimum value appeared 8 O'clock, which was 14.49 m~3/m~3.The minimum value appeared 22 and 0 O'clock, which was 15.56 m~3/m~3 in 30 cm soil layer from June to August. The minimum value appeared from 11 to 13 O'clock, which was 15.32 m~3/m~3. Soil temperature exit same trend in each month in summer, soil moisture affected by soil temperature. The average maximum soil temperature value was 17.59℃, which appeared in July and August. The average minimum soil temperature value was 4.57℃, which appeared in June 1. Soil heat flux showed a sine curve change from July to August in 10 and 30 cm soil layer. The maximum and minimum values of soil heat flux were 67.35 and -21.62 W/m~2 in 10 cm soil layer. The maximum and minimum values of soil heat flux were 21.33 and -2.73 W/m~2 in 30 cm soil layer. Soil heat flux was more sensitive than soil temperature. Soil heat flux was declined with soil temperature decreased. The soil heat flux was negative, indicating that during this time soil heat transfer from soil to the atmosphere. The soil heat flux was positive, soil heat transfer from the atmosphere to the soil. Daily evapotranspiration was calculated by the formula of Penman and analyzed relationship with climatic factors. Wind speed was significantly affected on daily evapotranspiration, and wind speed and relative humidity were major factors on daily evapotranspiration change.
来源 草业学报 ,2012,21(6):306-314 【核心库】
关键词 黄河源头 ; 土壤温度 ; 土壤湿度 ; 土壤热通量 ; 日蒸散量
地址

青海省气象科学研究所, 青海, 西宁, 810001

语种 中文
ISSN 1004-5759
学科 畜牧、动物医学、狩猎、蚕、蜂
基金 国家自然科学基金
文献收藏号 CSCD:4715589

参考文献 共 25 共2页

1.  张世强. 青藏高原土壤水热过程模拟研究(Ⅱ):土壤温度. 冰川冻土,2005,27(1):95-99 被引 10    
2.  吴青柏. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土,2003,25(3):250-255 被引 94    
3.  刘兴元. 草地生态系统服务功能及其价值评估方法研究. 草业学报,2011,20(1):167-174 被引 90    
4.  韩立辉. 青藏高原"黑土滩"退化草地植物和土壤对秃斑面积变化的响应. 草业学报,2011,20(1):1-6 被引 47    
5.  李东. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报,2010,19(2):160-168 被引 35    
6.  李晓东. 气候变化对西北地区生态环境影响的若干进展. 草业学报,2011,28(2):286-295 被引 1    
7.  周华坤. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报,2005,14(3):31-40 被引 198    
8.  Henderson-sellers A. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society,1993,74(7):1335-1350 被引 41    
9.  Shao Y. Soil moisture simulation, a report of the rice and PILPS workshop. IGPO Publication Series No. 14,1994:1-100 被引 1    
10.  杨金忠. 土壤中水、汽、热运动的耦合模型和蒸发模拟. 武汉水利电力学院学报,1989,22(4):35-44 被引 12    
11.  蔡树英. 温度影响下土壤水分蒸发的数值分析. 水利学报,1991(11):1-8 被引 14    
12.  张强. 干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究. 自然科学进展,2007,17(2):211-216 被引 36    
13.  李锁锁. 黄河上游地区辐射收支及土壤热状况季节变化特征. 太阳能学报,2009,30(2):156-162 被引 6    
14.  叶笃正. 青藏高原气象学,1979:220 被引 7    
15.  王俊峰. 气温升高对青藏高原沼泽草甸浅层土壤水热变化的影响. 兰州大学学报(自然科学版),2010,46(1):33-39 被引 10    
16.  赵红岩. 中国冬季地温场变化特征及与夏季降水场的关系. 高原气象,2002,21(1):52-58 被引 13    
17.  吴素霞. 近年来黄河源头地区玛多县湖泊变化. 湖泊科学,2008,20(3):364-368 被引 19    
18.  邱国玉. 气候变化与区域水分收支实测、遥感与模拟,2011:162 被引 1    
19.  Smith M. Report on the expert consultation on revision of FAO methodologies for crop eater requirements. Land and Water Development Division,1992:1-54 被引 2    
20.  冯承彬. 三江源区人工草地蒸散量与气候因子的相关分析. 安徽农业科学,2008,36(33):14365-14367 被引 2    
引证文献 5

1 陈玫妃 青藏高原高寒草地土壤水分生态特征研究现状 中国草地学报,2015,37(2):94-101
被引 19

2 付刚 藏北高原不同海拔高度高寒草甸蒸散与环境温湿度的关系 中国草地学报,2015,37(3):67-73
被引 8

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号