帮助 关于我们

返回检索结果

基于CoupModel的青藏高原多年冻土区土壤水热过程模拟
Simulating the Water-Heat Processes in Permafrost Regions in the Tibetan Plateau Based on CoupModel

查看参考文献42篇

张伟 1   王根绪 2   周剑 3   刘光生 2   王一博 1  
文摘 近年来,青藏高原多年冻土区生态环境呈现出逐年恶化趋势,从而对多年冻土活动层水热过程造成显著影响。此外,如何构建更加有效、针对寒区的陆面过程模式成为寒区研究的重点、热点之一。作为一种有效的参数估计方法,Bayes参数估计算法具有准确估计陆面过程模式参数的能力。因此,基于2005--2008年观测数据,利用CoupModel模型对青藏高原风火山流域土壤水热运移过程进行模拟;同时,利用Bayes参数估计方法估计部分水热运移参数。结果显示:模型对土壤温度(ST)的模拟效果较好,NSE系数均在0.90以上;也能够较好模拟浅层(0~40cm)土壤水分,NSE值均达到0.80以上,而对40cm以下土壤水分的模拟结果较差。模型也能够较准确模拟活动层土壤的冻结一融化过程。模型对温度水分极值和40cm深度以下水分的模拟存在一些偏差。值得一提的是,基于重要性采样MCMC方案的Bayes参数估计算法能够有效估计水热运移参数,模型模拟结果得到极大的改进。Bayes算法能够广泛解决陆面过程模式参数估计问题。
其他语种文摘 In recent years, ecological environment is deteriorating in permafrost regions of the Tibetan Plateau, which dramatically affects the water and heat processes between the earth and atmosphere. In addition, it is a key and hot research field in cold regions how to structure more effective land surface process mode. In Fenghuoshan basin of the plateau, the water and heat processes were simulated by using a land surface model CoupModel, on the basis of observed data sets from 2005 to 2008. The simulation reveals that the model is able to simulate soil temperatures well and capture all soil layer temperature fluctuation trends and all the Nash-Sutcliffe Model Efficiency Coefficient values between observed and simulated soil temperatures are over 0. 90. The mean error values display that the model overestimates the temperatures at 20~55 cm depths and underestimates the temperatures at 65~120 cm depths. The minimum root mean square error value is at 55 cm depth, where temperature fluctuation is less than that at the surface layers. Meanwhile, the model has the capacity of simulating soil water content in shallow layers (0 ~40 cm), where Nash-Sutcliffe Model Efficiency Coefficient value is between observed and simulated soil water content, above 0. 80. However, simulated soil water content is not very good below 40 cm depth, perhaps due to sharp slope. The model can also simulate preferably the freeze-thaw processes within the active layer. The simulation of the soil water content bellow 40 cm depth has a little deviation, and so does the simulation of extreme values of temperature and water content. What's more, as an effective parameter estimation method, Bayesian parameter estimation method has the ability to evaluate model parameters. In this research, parameters include those of meteorology, soil freezing, soil thermal transport, frozen soil and hydraulics. Thus, the simulation will be greatly improved. The Bayesian algorithm can be utilized to complete parameter estimation.
来源 冰川冻土 ,2012,34(5):1099-1109 【核心库】
关键词 青藏高原 ; 多年冻土区 ; CoupModel ; 水热过程 ; Bayes算法 ; 参数估计
地址

1. 兰州大学资源环境学院, 甘肃, 兰州, 730000  

2. 中国科学院成都山地灾害与环境研究所, 中国科学院山地表生过程与生态调控重点实验室, 四川, 成都, 610041  

3. 中国科学院寒区旱区环境与工程研究所, 甘肃, 兰州, 730000

语种 中文
ISSN 1000-0240
学科 地质学
基金 国家自然科学基金国家杰出青年科学基金 ;  冻土国家重点实验室开放基金项目 ;  国家自然科学基金项目
文献收藏号 CSCD:4696651

参考文献 共 42 共3页

1.  Yang Zhaoping. Effects of permafrost degradation on ecosystems. Acta Ecologica Sinica,2010,30:33-39 被引 14    
2.  Li Xin. Modeling Chinese cryospheric change by using GIS technology. Cold Regions Science and Technology,2003,36:1-9 被引 6    
3.  Li Xin. Review on the Interaction Models between Climatic System and Frozen Soil. Journal of Glaciology and Geocryology,2002,24(3):315-321 被引 2    
4.  李新. 冻土一气候关系模型评述. 冰川冻土,2003,24(3):315-321 被引 1    
5.  Zhao Lin. Changes of climate and seasonally frozen ground over the past 30 years in Qing-hai-Xizang (Tibetan) Plateau, China. Global and Planetary Change,2004,43:19-31 被引 52    
6.  Ma Yaoming. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau-from GAME/Tibet to CAMP/Tibet. Physics and Chemistry of the Earth,2003,28:63-74 被引 17    
7.  Jin Huijun. Permafrost and climatic change in China. Global and Planetary Change,2000,26:387-404 被引 33    
8.  Cheng Guodong. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research,2007,112:F02S03 被引 33    
9.  Li Xin. Cryospheric change in China. Global and Planetary Change,2008,62:210-218 被引 72    
10.  Pang Qiangqiang. Active layer thickness calculation over the Qinghai Tibet Plateau. Cold Regions Science and Technology,2009,57:23-28 被引 16    
11.  南卓铜. 近30年来青藏高原西大滩多年冻土变化. 地理学报,2003,58(6):817-823 被引 31    
12.  金会军. 黄河源区冻土特征及退化趋势. 冰川冻土,2010,32(1):10-17 被引 49    
13.  王银学. 影响多年冻土上限变化的因素探讨. 冰川冻土,2011,33(5):1064-1067 被引 17    
14.  Wang Genxu. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Gatena,2007,70:506-514 被引 1    
15.  Zhang Yinsheng. Land-surface hydro-logical processes in the permafrost region of the eastern Tibetan Plateau. Journal of Hydrology,2003,283:41-56 被引 5    
16.  Wang Genxu. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. Journal of Hydrology,2009,375:438-449 被引 26    
17.  Yang Meixue. The soil moisture distribution, thawing freezing processes and their effects on the seasonal transition on the Qinghai Xizang (Ti-betan) plateau. Journal of Asian Earth Sciences,2003,21:457-465 被引 22    
18.  Zhao Lin. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin,2000,45(23):2181-2187 被引 25    
19.  李述训. 冻融作用对地气系统能量交换的影响分析. 冰川冻土,2002,24(5):506-511 被引 43    
20.  吴青柏. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土,2003,25(3):251-255 被引 4    
引证文献 26

1 王庆峰 祁连山区黑河上游多年冻土分布考察 冰川冻土,2013,35(1):19-29
被引 20

2 黄培培 基于Wavelet-ANFIS和MODIS地表温度产品的青藏高原0cm土壤温度估算方法 冰川冻土,2013,35(1):74-83
被引 6

显示所有26篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号