帮助 关于我们

返回检索结果

Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau

查看参考文献35篇

文摘 By using the observed monthly mean temperature and humidity datasets of 14 ra- diosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau (TP), the relationship between the atmospheric water vapor (WV) and precipitation in summer and the precipitation conversion efficiency (PEC) over the TP are analyzed. The results are obtained as follows. (1) The summer WV decreases with increasing altitude, with the largest value area observed in the northeastern part of the TP, and the second largest value area in the southeastern part of the TP, while the northwestern part is the lowest value area. The summer precipitation decreases from southeast to north- west. (2) The summer WV presents two main patterns based on the EOF analysis: the whole region consistent-type and the north-south opposite-type. The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains. (3) The summer precipitation is more (less) in the southern (northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south, and vice versa. (4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer, which is obviously bigger in the southern TP than that in the northern TP.
来源 Journal of Geographical Sciences ,2012,22(5):795-809 【核心库】
DOI 10.1007/s11442-012-0964-8
关键词 the Tibetan Plateau ; water vapor content ; precipitation ; precipitation conversion efficiency
地址

College of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044

语种 英文
ISSN 1009-637X
学科 大气科学(气象学)
基金 国家973计划 ;  R&D Research Development Program of China Special Fund for Public Welfare Industry (Meteorology) ;  Open Lab fundation of Institute of Plateau Meteorology, CMA, Chengdu
文献收藏号 CSCD:4695614

参考文献 共 35 共2页

1.  Cai Ying. Distribution changes of atmospheric precipitable water over Qinghai-Xizang Plateau and its surroundings and their changeable precipitation climate. Plateau Meteorology. (in Chinese),2004,23(1):1-10 被引 4    
2.  Cao Liqing. Water vapor content in the atmosphere and its variation trend over North China. Advances in Water Science. (in Chinese),2005,16(3):439-443 被引 1    
3.  Dai Jiaxian. Climate of the Tibetan Plateau. (in Chinese),1990 被引 1    
4.  Dai Ying. Spatial-temporal variations of precipitable water over China. Journal of the Meteorological Sciences. (in Chinese),2009,29(2):143-149 被引 2    
5.  Ding Yihui. Diagnostic Analysis Methods in Synoptic Dynamics. (in Chinese),1989 被引 2    
6.  Feng Lei. Regional characteristics of summer precipitation on Tibetan Plateau and its water vapor feature in neighboring areas. Plateau Meteorology. (in Chinese),2008,27(3):491-499 被引 4    
7.  Huang Jiayou. Statistic Analysis and Forecast Methods in Meteorology. (in Chinese),2000 被引 1    
8.  Huang Ronghui. Characteristics of the water vapor transport in East Asian Monsoon Region and its difference from that in South Asian Monsoon Region in summer. Chinese Journal of Atmospheric Sciences. (in Chinese),1998,22(4):460-469 被引 18    
9.  Huang Yuxia. Analysis of summer precipitation anomaly and water vapor transport in Qinghai Plateau. Meteorological Monthly. (in Chinese),2006,32(1):18-24 被引 1    
10.  Li Xia. Research on precipitable water and precipitation conversion efficiency around Tianshan mountain area. Journal of Desert Research. (in Chinese),2003,23(5):509-513 被引 1    
11.  Lian Zhiluan. Analysis of characteristics of clouds, precipitation and water vapor over Shijiaz-huang. Meteorological Science and Technology. (in Chinese),2005,33(suppl.):21-26 被引 1    
12.  Liang Hong. Analysis of precipitable water vapor source distribution and its seasonal variation characteristics over Tibetan Plateau and its surroundings. Journal of Natural Resources. (in Chinese),2006,21(4):526-534 被引 1    
13.  Liu Shixiang. Trend analysis of the water vapor content and its transport over Lanzhou City. Arid Meteorology. (in Chinese),2006,24(1):18-22 被引 1    
14.  Luo Bu. Moistening effect analyses in Tibet in recent several decades. Plateau Meteorology. (in Chinese),2009,28(1):72-76 被引 1    
15.  North G R. Sampling errors in the estimation of empirical orthogonal functions. Month Weather Review,1982,110(7):699-706 被引 506    
16.  Qiao Quanming. Synoptic Meteorology of Qinghai-Xizang Plateau. (in Chinese),1994 被引 1    
17.  Wang Baojian. Regional features and variations of water vapor in Northwest China. Journal of Glaciology and Geocryology. (in Chinese),2006,28(1):15-21 被引 2    
18.  Wang Xiao. Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year. Acta Geographica Sinica. (in Chinese),2009,64(5):601-608 被引 2    
19.  Wang Xiurong. Regional characteristics of summer precipitation and water vapor amount in Northwest China. Climatic and Environmental Research. (in Chinese),2003,8(1):35-42 被引 2    
20.  Wang Weijia. Spatial-temporal characteristics of precipitable water over Sichuan. Plateau and Mountain Meteorology Research. (in Chinese),2010,30(3):52-57 被引 1    
引证文献 9

1 解承莹 近30 a青藏高原夏季空中水资源时空变化特征及其成因 自然资源学报,2014,29(6):979-989
被引 7

2 马思琪 基于GPS资料分析西藏中东部夏季可降水量日变化特征 高原气象,2016,35(2):318-328
被引 6

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号