帮助 关于我们

返回检索结果

深空、自由空间、非可视散射和水下激光光子通信
Overview of the photonic communication in deep space, free space and underwater communication

查看参考文献53篇

文摘 激光光子通信是国际通信前沿研究领域的一个重要的研究方向。近年来激光光子通信技术被广泛地应用于深空通信,卫星与卫星激光通信,自由空间通信,非可视散射通信和水下通信等领域内。首先,由于自由空间激光光子通信系统的高下传速率优势,使其成为未来深空通信重要的研究方向。其次,基于自由空间和非可视散射光子通信方式的分布式传感网络逐渐从实研室走向实际应用。在农业土壤质量检测、地震灾害事件、结构件压力、医疗参数数据、污染物输运和军事应用领域具有广泛的应用价值。另外,水下光子通信技术能够满足与水下观测和海底检测以及钻井平台相关的研究和检测所需要的高速率通信需求。总之,由于激光和光子探测技术的独特优势,光子通信技术研究兴趣日益强劲,将在深空、自由空间和水下通信中被广泛的应用和深入研究。
其他语种文摘 The photonic communication is an important and hotpots frontier field. In recent years, the photonic communication technology can be widely used in deep space and inter satellite photonic communication, free space and non-line-of-sight photonic communication and underwater photonic communication. Firstly, interest in high-data-rate free-space optical (FSO) laser communication systems has grown significantly in recent years because of the advantages offered by FSO systems over radio frequency (RF) systems. Secondly, Distributed sensor networks are emerging from research laboratories to field studies in applications such as monitoring soil quality, seismic events, stresses in structures, medical parameters, and contaminant transport, and in military applications. In additional, underwater photonic communication can provide the high data rate required to investigate and monitor underwater observation, subsea monitoring systems and facilities. In a word, because of the unique advantage of the laser and photon detector, the emerging interesting photonic communication technology can be deep investigated and widely applied in the deep space, atmosphere and underwater communication.
来源 红外与激光工程 ,2012,41(9):2424-2431 【核心库】
关键词 光子通信 ; 深空通信 ; 非可视散射通信 ; 水下通信
地址

中国科学院空间科学与应用研究中心, 北京, 100190

语种 中文
ISSN 1007-2276
学科 物理学;地球物理学;航空、航天技术的研究与探索
基金 国家自然科学青年科学基金
文献收藏号 CSCD:4689664

参考文献 共 53 共3页

1.  Hamid Hemmati. Deep Space Optical Communications,2005 被引 2    
2.  Wasiu O Popoola. BPSKsubcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology,2009,27(8):967-973 被引 15    
3.  Debbie Kedar. Non-line-of-sight optical wireless sensor network operating in multiscattering channel. Applied Optics,2006,45(33):8454-8461 被引 10    
4.  Shlomi Arnon. Underwater optical wireless communication Network. Optical Engineering,2010,49(1):1-6 被引 9    
5.  Boroson Don M. Overview of the mars laser communications demonstration project. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):8-11 被引 1    
6.  Scozzafava J J. The mars lasercom terminal. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):12-14 被引 1    
7.  Thomas Roberts W. Deep-space optical terminals (DOT) ground laser transmitter (GLT) trades and conceptual point design. IPN Progress Report,2010:42-183 被引 1    
8.  David O Caplan. Laser communication transmitter and receiver design. J Opt Fiber Commun Rep. 4,2007:225-362 被引 1    
9.  Lawrence M Candell. LDES: a prototype array optical receiver for the mars laser communications demonstration project. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):15-16 被引 1    
10.  Neal W Spellmeyer. Design for a 5 -Watt PPM transmitter for the mars laser communications demonstration. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):22-23 被引 1    
11.  Hemmati H. Earth-image tracking in the IR for deep space optical communications. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):18-19 被引 1    
12.  Wilson K E. Adaptive optics for daytime deep space laser communications from mars. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):17-18 被引 1    
13.  Verghese S. Geiger-mode avalanche photodiodes for photoncounting communications. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):24-25 被引 1    
14.  Robinson B S. 1.5 photons/bit photon-counting optical communications using geiger-mode avalanche photodiodes. IEEE Lasers & Electro-Optics Society Newsletter,2005,19(5):20-21 被引 1    
15.  Abhijit Biswas. Deep-space optical terminals (DOT) systems engineering. IPN Progress Report,2010:42-183 被引 1    
16.  Andre Tkacenko. Deepspace optical transceiver uplink detection analysis. IPN Progress Report,2010:42-181 被引 1    
17.  Wilson K E. An overview of the Galileo optical experiment (GOPEX). Jet Propulsion Laboratory. 42-114,1993:192-204 被引 1    
18.  Wilson K E. Overview of the ground-to-orbit lasercom demonstration. Space Communications,1998,15:89-95 被引 1    
19.  Arimoto Y. Preliminary result on laser communication experiment using engineering test satellite-VI(ETS-VI). SPIE. 2381,1995:151-158 被引 1    
20.  Nielsen T T. In-orbit test results of the optical intersatellite link, SILEX. A milestone in satellite communication. 53rd International Astronautical Congress,2002:IAC-02-M.2.01 被引 1    
引证文献 5

1 黄振 近红外单光子读取电路 红外与激光工程,2014,43(2):464-468
被引 2

2 叶蔚然 大气散射衰减定标系统设计 激光与红外,2014,44(11):1197-1201
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号