帮助 关于我们

返回检索结果

压缩传感用于极弱光计数成像
Compressed sensing for ultra-weak light counting imaging

查看参考文献33篇

俞文凯 1   姚旭日 1   刘雪峰 1   翟光杰 1 *   赵清 2  
文摘 为解决灵敏度达到单光子水平的面阵探测器件其单位像素上灵敏度有限和测量数多等问题,研制了具有极高灵敏度的成像系统来实现欠采样的极弱光成像探测。该成像系统基于光子计数成像技术和压缩感知理论,利用数字微镜器件(DMD)完成随机空间光调制,通过单光子点探测器收集光子,以计数形式记录下光强值。然后,利用算法重建出极弱光照明下的图像。文中设计了相关实验,研究了测量数、光强极弱程度和测量时间对成像质量的影响。最后,引入了图像质量评价标准和系统信噪比,分析对比了实验数据。结果表明,当测量数高于信号总维度的19.5%时,系统能完美成像,信噪比可低至2. 843 8 dB,DMD单位像素上的平均光子数可低于1.106 count/s,成像的关键在于信号的波动大于噪声的波动。该成像系统基本满足了极弱光成像探测在光强、灵敏度和采样数等方面的要求。
其他语种文摘 Since array detectors with sensitivity to single photon level were limited by sensitivity on each pixel and needed large number of measurements, an imaging system with high sensitivity was designed to realize under-sampling ultra-weak light imaging detection. This imaging system based on photon counting technique and compressed sensing theory employed a Digital Micromirror Device(DMD) to complete the random spatial light modulation, and used a single photon point detector to collect photons. The total light intensity was recorded by the form of photon counting. Then, the image of an object under ultra-weak light illumination could be reconstructed by an algorithm. The influences of the number of measurements, ultra-weak light intensity level and measurement time on the quality of imaging were investigated by experiments. Furthermore, the evaluation criterion of reconstructed image and the Signal to Noise Ratio (SNR) of the system were discussed to analyze the experimental data. The experimental results show that when the number of measurements is greater than19.5 percent of the dimension of data, it can acquire a good reconstruction, the SNR of the system can be even decreased to 2. 843 8 dB, and the average count of photons on each pixel of the DMD can be lower than 1. 106 count/s. Experiments also prove that the key of imaging lies in the fact that the fluctuation of signal should be greater than the fluctuation of noise. It concludes that this imaging system meets the demand of ultra-weak light imaging detection for ultra-weak light intensity, high sensitivity and few measurements.
来源 光学精密工程 ,2012,20(10):2283-2292 【核心库】
DOI 10.3788/ope.20122010.2283
关键词 光子计数成像 ; 压缩传感 ; 极弱光 ; 成像系统 ; 雪崩二极管
地址

1. 中国科学院空间科学与应用研究中心空间科学实验技术研究室, 北京, 100190  

2. 北京理工大学物理学院, 北京, 100081

语种 中文
ISSN 1004-924X
学科 机械、仪表工业;自动化技术、计算机技术
基金 国家863计划
文献收藏号 CSCD:4685604

参考文献 共 33 共2页

1.  Raptor Photonics. The ultimate in low light sensitivity,2012 被引 1    
2.  Id Quantique. ID100 single-photon counting detector datasheet,2011 被引 1    
3.  Micro Photon Devices. MPD's single-photon detection modules datasheet,2011 被引 1    
4.  杜克铭. 基于压缩传感的光子计数成像系统. 红外与激光工程,2012,41(2):363-368 被引 6    
5.  尼启良. 使用感应电荷位敏阳极的极紫外单光子计数成像系统. 光学精密工程,2010,18(12):2543-2548 被引 14    
6.  何玲平. 楔条形阳极光子计数探测器成像性能的检测. 光学精密工程,2009,17(11):2699-2704 被引 11    
7.  崔东旭. 光子计数法测量类针孔成像光斑照度. 光学精密工程,2012,20(4):733-738 被引 2    
8.  Shapiro J H. Computational ghost imaging. Phy. Rev. A,2008,78:061802(R) 被引 180    
9.  Katz O. Compressive ghost imaging. Appl. Phys. Lett,2009,95:131110 被引 119    
10.  Kocsis S. Observing the average trajectories of single photons in a two-slit interferometer. Sci,2011,332:1170-1173 被引 18    
11.  Zhang D. Correlated two-photon imaging with true thermal light. Opt. Lett,2005,30:2354-2356 被引 99    
12.  Pittman T. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A,1995,52(5):R3429-R3432 被引 248    
13.  Bennink R. Quantum and classical coincidence imaging. Phys. Rev. Lett,2004,92(3):0336011-0336014 被引 52    
14.  Albota M. Three-dimensional imaging laser radar with a photoncounting avalanche photodiode array and microchip laser. App. Opt,2002,41(36):7671-7678 被引 30    
15.  Howland G A. Photon-counting compressive sensing laser radar for 3D imaging. Appl. Opt,2011,50(31):5917-5920 被引 20    
16.  Donoho D L. Compressed sensing. IEEE Trans. Inform. Theory,2006,52(4):1289-1306 被引 2901    
17.  Cand Es E J. Compressive sampling. Proc. Int. Cong. Mathematicians,2006:1433-1452 被引 1    
18.  Baraniuk R G. Compressive sensing. IEEE Signal Process. Mag,2007,24(4):118-121 被引 503    
19.  Candes E J. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory,2006,52(2):489-509 被引 1352    
20.  Studer V. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceedings of the National Academy of Sciences,2012:E1679-E1687 被引 22    
引证文献 10

1 尹航 星图的稀疏表示性能 光学精密工程,2015,23(2):573-581
被引 3

2 周海军 高增益散粒噪声探测器的性能改进 光学精密工程,2013,21(11):2737-2743
被引 5

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号