帮助 关于我们

返回检索结果

2006—2011年西藏纳木错湖冰状况及其影响因素分析
Lake Ice and Its Effect Factors in the Nam Co Basin, Tibetan Plateau

查看参考文献17篇

曲斌 1   康世昌 2   陈锋 1   张拥军 1   张国帅 1  
文摘 湖冰是气候变化的指示器,为分析纳木错地区气候对湖冰冰情的影响,利用2006—2011年西藏纳木错(面积2000km2)和白马纳木错(面积1.45 km~2)湖冰的观测资料,结合MODIS遥感影像资料分析了两个湖泊完全冻结日期、完全解冻日期、封冻期、湖冰厚度的状况及其与气温和风速的关系。纳木错湖湖冰冰情主要受气温的影响,同时也受风速的影响。纳木错湖的完全冻结日期集中在2月,完全解冻日期在5月中旬,封冻期平均天数为90 d,封冻期与冬季负积温具有较好的对应关系。面积较小的白马纳木错冰情的年际波动较大,其平均封冻期为124 d。纳木错湖的最大冰厚一般出现在3月,其厚度为58~65 cm。
其他语种文摘 Lake ice is a good indicator of climate change.In order to analyse the impact of climate on lake ice,we use in situ data as well as remote sensing images to determine the dates of freeze-up and break-up,thickness of lake ice of the Nam Co(2000 km~2) and Baima Nam Co(1.45 km2) in the Tibetan Plateau from 2006 to 2011.Combined with meteorological parameters,we found that lake ice in Nam Co is mainly influenced by air temperature,and wind speed also plays an important role in this process.Date of freeze-up and break-up for Nam Co is in February and mid-May,respectively,with an average of 90 days for freeze-up period.Lake ice exhibits relatively larger variability in Baima Nam Co with an average of 124 days for freeze-up period.There is a close relationship between freeze-up period and the negative accumulated temperature.Maximum thickness of the lake ice in the Nam Co occurs in March ranging 58-65 cm.
来源 气候变化研究进展 ,2012,8(5):327-333 【扩展库】
关键词 湖冰 ; MODIS ; 气温 ; 风速 ; 纳木错 ; 青藏高原
地址

1. 中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京, 100085  

2. 中国科学院青藏高原研究所, 冰冻圈科学国家重点实验室;;中国科学院青藏高原环境变化与地表过程重点实验室, 北京, 100085

语种 中文
ISSN 1673-1719
学科 地球物理学
基金 国家自然科学基金 ;  全球变化研究重大科学研究项目
文献收藏号 CSCD:4650042

参考文献 共 17 共1页

1.  辛羽飞. 全球冰冻圈变化预测研究现状. 极地研究,2008,20(3):671-682 被引 3    
2.  Magnuson J J. Historical trends in lake and river ice cover in the Northern Hemisphere. Nature,2000,289:1743-1746 被引 34    
3.  Duguay C R. Recent trends in Canadian lake ice cover. Hydrological Processes,2006,20:781-801 被引 16    
4.  Palecki M A. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. Journal of Climate and Applied Climatology,1986,25:893-902 被引 6    
5.  Weyhenmeyer G A. Nonlinear temperature response of lake ice breakup. Geophysical Research Letters,2004,31:1-4 被引 7    
6.  Anderson W L. Evidence of recent warming and El Nin~o-related variations in ice breakup of Wisconsin lakes. Limnology and Oceanography,1996,41(5):815-821 被引 3    
7.  Menzel A. Plant phonological anomalies in Germany and their relation to air temperature and NAO. Climatic Change,2003,57:243-263 被引 46    
8.  Blenckner T. Atmospheric circulation and its impact on ice phenology in Scandinavia. Boreal Environment Research,2004,9:371-380 被引 2    
9.  陈贤章. 青藏高原湖冰及其遥感监测. 冰川冻土,1995,17(3):241-246 被引 21    
10.  殷青军. 基于EOS/MODIS数据的青海湖遥感监测. 湖泊科学,2005,17(4):356-360 被引 30    
11.  Haginoya S. Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau. Scientific Online Letters on the Atmospheric (SOLA),2009,5:172-175 被引 11    
12.  Zhang G. Monitoring lake level changes on the Tibetan Plateau using ICES at altimetry data (2003-2009). Remote Sensing of Environment,2011,115(7):1733-1742 被引 34    
13.  陈锋. 纳木错流域冰川和湖泊变化对气候变化的响应. 山地学报,2009,27(6):641-647 被引 23    
14.  康世昌. 青藏高原纳木错流域现代环境过程及其变化,2011:1-418 被引 6    
15.  Lenormand F. Development of a historical ice database for the study of climate change in Canada. Hydrological Processes,2002,16(18):3707-3722 被引 6    
16.  魏秋方. 湖冰遥感监测方法综述. 地理科学进展,2010(7):803-810 被引 21    
17.  曹梅盛. 冰冻圈遥感,2006:25-27 被引 1    
引证文献 18

1 吴其慧 1986—2017年呼伦湖湖冰物候特征变化 地理科学进展,2019,38(12):1933-1943
被引 2

2 姚晓军 近10年来可可西里地区主要湖泊冰情时空变化 地理学报,2015,70(7):1114-1124
被引 21

显示所有18篇文献

论文科学数据集

1. 青藏高原高海拔地区六冰川气温数据(2019)

2. 塔吉克斯坦西帕米尔冰川气象站观测资料(2020)

3. 中亚地区RegCM区域模式长时间气温和降水模拟数据集(1948-2011)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号