帮助 关于我们

返回检索结果

微通道中高分子运动的耗散粒子动力学模拟
DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS OF MACROMOLECULES IN MICRO-CHANNELS

查看参考文献24篇

周吕文 1   刘谋斌 1 *   常建忠 2  
文摘 对不同长度及不同数量的高分子链在微直通道及微缩通道中的流动进行了模拟与分析.研究表明,高分子链的伸展状态与微通道的形状密切相关,微直通道中高分子链能较充分地伸展,方形微缩通道中高分子链未能充分伸展,而斜坡微缩通道中高分子链的伸展状态介于微直通道与方形微缩通道之间.高分子的存在对微通道系统的温度没有明显影响,对密度与水平流动速度有较明显的影响.高分子链的运动直接影响到周围的简单流体粒子,降低其周围流体粒子的流动速度,对密度与速度产生局部扰动,形成"拖曳"现象.高分子链分布越密集,长度越长,高分子链的拖曳现象越明显.
其他语种文摘 The transport and conformation of macromolecules in micro-channels were studied by using the dissipative particle dynamics(DPD) and finite extensible non-linear elastic(FENE) bead spring chains model.The dynamic behavior of macromolecules with different numbers of beads and different chain lengths in three kinds of micro-channels,straight,quadrate contraction and sloping contraction micro-channels are comparatively analyzed.It is found that macromolecules are mainly concentrated in the middle of channels.Macromolecules located near solid walls are stretched better than those in the middle of channels,which are usually coiled.The shape of micro-channel can influence the conformation and transportation of macromolecules.Straight channels can well stretch the macromolecules.Quadrate contraction channels can have negative effects in stretching the macromolecules with possible circulation flow at the corner areas.While the behavior of sloping contraction channels is between that of the straight channels and quadrate contraction channels.It is also found that macromolecule chains do not influence the temperature distribution and evolution.Instead macromolecular chains have remarkable influences on the density and velocity distribution,while the distribution and conformation of the macromolecules are closely related to the shape and geometry of the micro channels.The macromolecules tend to drag the simple DPD particles,reducing their velocity,and leading to density fluctuations.The dragging effect is more important as the number of macromolecules or the length of the macromolecular chain increases.
来源 高分子学报 ,2012(7):720-727 【核心库】
DOI 10.3724/sp.j.1105.2012.11345
关键词 耗散粒子动力学 ; 高分子悬浮运动 ; 微流动
地址

1. 中国科学院力学研究所, 北京, 100190  

2. 中北大学机电工程学院, 太原, 030051

语种 中文
ISSN 1000-3304
学科 化学
基金 国家自然科学基金
文献收藏号 CSCD:4603919

参考文献 共 24 共2页

1.  Rapaport D C. The Art of Molecular Dynamics Simulation. (3~(rd) ed),2004:4-8 被引 1    
2.  Hoogerbrugge P J. Europhys Lett,1992,19:155-160 被引 193    
3.  Groot R D. J Chem Phys,1997,107(11):4423-4435 被引 226    
4.  陈硕. 复杂流体流动的耗散粒子动力学研究进展. 科技通报,2006,22(5):596-602 被引 11    
5.  白志强. PE/PEO/PE-PEO对称三元共混体系相行为的耗散粒子动力学模拟研究. 高分子学报,2011(5):530-536 被引 5    
6.  Fan X. Phys Fluids,2003,15(1):11-21 被引 4    
7.  Groot R D. J Chem Phys,2003,118(24):11265-11277 被引 22    
8.  Groot R D. Langmuir,2000,16:7493-7502 被引 37    
9.  Dzwinel W. J Mol Model,2002,8:33-35 被引 3    
10.  Tanaka H. Phys Rev Lett,2000,85:1338-1341 被引 7    
11.  Schlijper A G. J Rheol,1995,39(3):567-579 被引 12    
12.  Venturoli M. Phys Chem Comm,1999,10:45-49 被引 3    
13.  Liu M B. Phys Fluids,2006,18:017101-017114 被引 12    
14.  Liu M B. Water Resour Res,2007,43(4):4411-1-4411-4 被引 1    
15.  Liu M B. J Comput Phys,2007,222:110-130 被引 6    
16.  常建忠. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报,2008,57(7):3954-3961 被引 23    
17.  Fan X. Phys Fluids,2006,18:063102 被引 4    
18.  Larson R G. J Rheol,1999,43:267-304 被引 5    
19.  Frisch U. Phys Rev Lett,1986,56(14):1505-1508 被引 79    
20.  Chen S. Annu Rev Fluid Mech,1998,30:329-364 被引 276    
引证文献 9

1 刘源 耗散粒子动力学研究双层膜线张力与抗弯刚度的关系 高分子学报,2013(4):570-575
被引 1

2 许少锋 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟 物理学报,2013,62(12):124701-1-124701-9
被引 3

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号