帮助 关于我们

返回检索结果

非均匀分布颗粒群中的曳力分布
Drag force distribution of heterogeneous particle clusters

查看参考文献24篇

张云 1   葛蔚 2 *   王小伟 2   赵辉 3   杨朝合 3   李静海 2  
文摘 本文采用格子Boltzmann方法(LBM)在图形处理器(GPU)上计算了由静止圆柱阵列组成的团聚物周期单元内的不可压缩流体流动, 流固交界面处采用直接反弹以实现无滑移边界, 每个圆柱上的曳力通过统计动量交换直接求得。根据LBM求得的流体速度, 对于团聚物中的单圆柱按能量最小多尺度(EMMS)模型计算平均曳力系数, 并考察了将聚团近似为均匀悬浮的临界条件。对颗粒雷诺数Re_p在0~10之间的80种固相份额的模拟结果表明, 密相空隙率可以表征这种临界条件。当固相份额恒定时, 该临界空隙率随着Re_p的增加而降低;当Re_p恒定时, 该临界空隙率随着固相份额的增加而降低。
其他语种文摘 The incompressible fluid flowing through a cluster formed by arrays of cylinders in a periodic domain with was simulated by performing lattice Boltzmann method(LBM) on graphics processing units(GPUs).The bounce-back scheme was adopted on the fluid-solid interfaces, which insures the no-slip boundary condition.The drag force on each cylinder was calculated by the momentum exchange method directly.Based on the flow field thus obtained, the average drag coefficient of each cylinder inside particle cluster is calculated by the Energy-Minimization Multi-Scale (EMMS) model, and the critical condition for treating the cluster as homogenous suspension approximately is investigated.Eighty average solid fractions were studied for particle Reynolds number Re_p ranging from 0 to 10, indicating that the critical condition can be characterized by the voidage of dense phase.The critical condition is subject not only to Re_p but also to average solid fraction:it decreases with the increase of Re_p at constant average solid fraction or increases with average solid fraction at constant Rep_p.
来源 计算机与应用化学 ,2011,28(1):27-31 【核心库】
关键词 EMMS ; 非均匀性 ; 曳力系数
地址

1. (青岛) 中国石油大学, 重质油加工国家重点实验室;;多相复杂系统国家重点实验室, 山东, 青岛, 266555  

2. 中国科学院过程工程研究所, 多相复杂系统国家重点实验室, 北京, 100190  

3. (青岛) 中国石油大学, 重质油加工国家重点实验室, 山东, 青岛, 266555

语种 中文
ISSN 1001-4160
学科 化学;自动化技术、计算机技术;化学工业
基金 中国-澳大利亚国际合作项目 ;  国家自然科学基金资助项目
文献收藏号 CSCD:4390626

参考文献 共 24 共2页

1.  李静海. 颗粒流体复杂系统的多尺度模拟,2005 被引 45    
2.  Li J. Energy transport and regime transition of particle-fluid two-phase flow. Circulating Fluidized Bed Technology II,1988:75-87 被引 4    
3.  Li J. Particle-fluid two-phase flow: The Energy-Minimization Multi-Scale Method,1994 被引 29    
4.  Yang N. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure- dependent drag coefficient. Chemical Engineering Journal,2003,96(1/3):71-80 被引 100    
5.  Wang W. Simulation of gas-solid two-phase flow by a multi-scale CFD approach--of the EMMS model to the sub-grid level. Chemical Engineering Science,2007,62(1/2):208-231 被引 80    
6.  Wang J W. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical Engineering Science,2008,63(6):1553-1571 被引 14    
7.  Lu B N. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chemical Engineering Science,2009,64(15):3437-3447 被引 24    
8.  Jiradilok V. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chemical Engineering Science,2006,61(17):5544-5559 被引 28    
9.  Armstrong L M. Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed. Chemical Engineering Journal,2010,160(1):239-248 被引 7    
10.  Nikolopoulos A. An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow-Part I: Numerical formulation. Chemical Engineering Science,2010,65(13):4080-4088 被引 14    
11.  Nikolopoulos A. An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow-Part II: Numerical formulation. Chemical Engineering Science,2010,65(13):4089-4099 被引 9    
12.  Wang X. Numerical simulation and experimental validation of gas-solid flow in the riser of a dense fluidized bed reactor. Particuology,2009,7(4):278-282 被引 2    
13.  Wen C. Mechanics of fluidization. Chem Eng Prog Symp Ser,1966,62:100-111 被引 15    
14.  Ergun S. Fluid flow through packed columns. Chemical Engineering Progress,1952,48(2):89-94 被引 407    
15.  Gibilaro L G. Generalized friction factor and drag coefficient correlations for fluid particle interactions. Chemical Engineering Science,1985,40(10):1817-1823 被引 26    
16.  Chen S. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics,1998,30:329-364 被引 276    
17.  Qian Y H. models fornavier-stokes equation. Europhysics Letters,1992,17(6):479-484 被引 393    
18.  D'Humieres D. Generalized lattice-Boltzmann equations. Rarefied gas dynamics-theory and simulations/Prog Astronaut Aeronaut Vol 159,1994:450-458 被引 3    
19.  D'Humieres D. Multiple- relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,2002,360(1792):437-451 被引 43    
20.  Multi-Scale Discrete Simulation Project Team. GPU-based Multi-scale Discrete Simulation of Parallel Computing,2009 被引 1    
引证文献 1

1 王利民 颗粒群绕流传质特性的格子Boltzmann模拟 化学反应工程与工艺,2016,32(4):289-296
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号