帮助 关于我们

返回检索结果

在不同营养条件下铜绿微囊藻对模拟微重力胁迫的响应
THE EFFECTS OF SIMULATED MICROGRAVITY ON MICROCYSTIS AERUGINOSA DEPENDING ON THE NUTRIENT CONCENTRATIONS OF MEDIUM

查看参考文献22篇

文摘 通过测定在不同重力水平和营养条件下培养的铜绿微囊藻(Microcystis aeruginosa)的各项生理生化指标,研究了培养基的营养物质浓度对微囊藻细胞响应模拟微重力胁迫的影响。结果表明,在正常浓度的BG-11(富营养)和营养盐浓度减为1/10的BG-11(贫营养)培养基中培养的微囊藻对模拟微重力胁迫都很敏感,培养2d后多项生理生化指标显著改变;但是在富营养和贫营养条件下,模拟微重力的作用效果是截然不同的。对培养在BG-11中的微囊藻细胞来说,模拟微重力抑制其生长和光合活性,导致细胞内色素(叶绿素a和类胡萝卜素)、蛋白(藻蓝蛋白和可溶性蛋白)和毒素含量显著升高,向外分泌的毒素含量降低;而对培养在1/10BG-11中的藻细胞来说,模拟微重力促进其生长和光合活性,导致细胞内色素、蛋白和毒素含量降低,并使得毒素分泌增强。模拟微重力或营养限制单独作用所造成的影响相似,且后者的作用效果强于前者。当二者同时存在时,模拟微重力可以部分抵消营养限制对微囊藻生长和代谢的影响,这可能是由于模拟微重力下藻细胞的生长受到抑制而导致营养需求降低,也可能是由于模拟微重力提高了藻细胞利用营养物质的效率。总之,微囊藻对模拟微重力胁迫的响应与培养基的营养条件有关。
其他语种文摘 In order to determine the interaction between nutrient concentration and simulated microgravity(SMG), Microcystis aeruginosa, cultured under rich and low nutrient medium(BG-11 and 1/10 BG-11 medium), were treated with different gravity conditions.Both of M.aeruginosa in BG-11 and 1/10 BG-11 were sensitive to SMG.Their growth and metabolism changed significantly after 2day-treatments.The effects of SMG varied significantly with the nutrient concentrations of medium.For M.aeruginosa cultured in BG-11, SMG led to the decreased cell number and photochemical efficiency of PS II as well as the increased cellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and microcystin.The SMG induced changes of cells in 1/10 BG-11 were contrary to the above-mentioned changes of cells in BG-11.In1/10 BG-11, SMG led to the increased cell number and photochemical efficiency of PS II as well as the decreased cellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and micro-cystin.The effects of SMG and nutrient limitation were alike when they were applied to M.aeruginosa separately.The influences of nutrient limitation were stronger than those of SMG.Under SMG, maybe the nutrient demand of cells was reduced, as a result of the suppressed growth and photochemical activity.Otherwise, SMG might enable cells to use nutriments more effectively.Thus, SMG could alleviate the stress of low nutrient medium to M.aeruginosa.Collectively, these findings supported that the nutrient concentration of medium could significantly affect the responses of M.aeruginosa to SMG.
来源 水生生物学报 ,2011,35(2):300-306 【核心库】
关键词 模拟微重力 ; 微囊藻 ; 营养浓度 ; 培养基
地址

中国科学院水生生物研究所, 武汉, 430072

语种 中文
文献类型 研究性论文
ISSN 1000-3207
学科 普通生物学
基金 载人航天项目资助
文献收藏号 CSCD:4384264

参考文献 共 22 共2页

1.  王欣敏. 模拟微重力生物效应回转器的研制与应用. 生物物理学报,1997,13(4):691-694 被引 7    
2.  Benoit M R. Microgravity, bacteria and the influence of motility. Adv. Space Res,2007,39(7):1225-1232 被引 3    
3.  Nickerson C A. Microgravity as a novel environmental signal affecting Salmonella enterica Serovar Typhimurium virulence. Endocrinology,2000,68(6):3147-3152 被引 1    
4.  Wilson J W. Low-shear modeled microgravity alters the Salmonella enterica Serovar Typhimurium stress response in a RpoS-independent manner. Appl. Environ. Microbiol,2002,68(11):5408-5416 被引 16    
5.  Wilson J W. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci. USA,2002,99(21):13807-13812 被引 10    
6.  Nickerson C A. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbio. Methods,2003,54(1):1-11 被引 8    
7.  Schneegurt M A. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS. Adv. Space Res,1996,18(4/5):177-180 被引 4    
8.  Wang G H. Real-time studies on microalgae under microgravity. Acta Astronautica,2004,55(2):131-137 被引 3    
9.  Wang G H. Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronautica,2006,58(2):264-269 被引 1    
10.  Xiao Y. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (Cyanophyta). Toxicon,2010,56:1-7 被引 4    
11.  Baker P W. The effect of simulated microgravity on bacteria from the Mir Space Station. Micrograv. Sci. Tech,2004,15(1):35-41 被引 5    
12.  Baker P W. Attachment to stainless steel by Mir Space Station bacteria growing under modeled reduced gravity at varying nutrient concentrations. Biofilms,2005,2:1-7 被引 2    
13.  Baker P W. Mir Space Station bacteria responses to modeled reduced gravity under starvation conditions. Adv. Space Res,2006,38(6):1152-1158 被引 3    
14.  代瑞华. 氮磷限制对铜绿微囊藻生长和产毒的影响. 环境科学学报,2008,28(9):1739-1744 被引 20    
15.  张玮. 不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响. 水生生物学报,2006,30(3):318-322 被引 33    
16.  Li H. Iron-stimulated growth and microcystin production of Microcystis novacekii UAM 250. Limnologica - Ecology and Management of Inland Waters,2009,39(3):255-259 被引 1    
17.  Humphries S E. A simple method for separating cells of Microcystis aeruginosa for counting. Br. Phycol. J,1979,14:313-316 被引 3    
18.  国家环境保护总局. 水和废水监测分析方法(第四版),2002:772-776 被引 1    
19.  李合生. 植物生理生化实验原理和技术,2000:167-169 被引 324    
20.  Myers J. Relation between pigment content and photosynthetic characteristics in a blue-green algae. J. Gen. Physiol,1955,39:11-22 被引 2    
引证文献 3

1 史静 磷在沉积物-生物膜-上覆水之间迁移转化特征 水土保持学报,2014,28(6):298-303
被引 1

2 袁俊霞 模拟失重下铁源对辣椒叶片结构及叶绿素荧光参数的影响 航天医学与医学工程,2018,31(4):425-430
被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

iAuthor 链接
王高鸿 0000-0001-5896-066X
刘永定 0000-0001-9705-9129
版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号