帮助 关于我们

返回检索结果

鼓泡塔中离子液体-空气两相流的CFD-PBM耦合模拟
CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column

查看参考文献21篇

文摘 针对咪唑类离子液体介质,采用Euler-Euler双流体模型与群平衡模型(PBM)耦合的方法,引入由实验结果拟合获得的适用于该介质的气液相间曳力系数模型,对内径0.203 m、高2 m的鼓泡塔中离子液体-空气两相流进行计算流体力学模拟,研究了不同表观气速下塔内气液两相速度场分布、气含率和气泡尺寸分布等流体动力学性质。与现有的相间曳力系数模型Schiller-Naumann模型模拟结果对比,采用本文模型得到的气含率与实验值吻合更好,气泡尺寸分布与实验结果一致。
其他语种文摘 Ionic liquids have been regarded as a new and effective solvent and absorbent, however, the fluid dynamics of ionic liquids have not been thoroughly investigated.Computational fluid dynamics(CFD)is an increasingly important method to understand the fluid dynamics of multiphase fluid.In this work, the gas holdup, bubble size distribution and flow velocities of ionic liquid-air two-phase flow in bubble column were investigated by using Euler-Euler method and population balance model(PBM)coupled numerical model.Considering the special properties of ionic liquids, ionic liquid drag coefficient and Schiller-Naumann model were both used as interphase drag coefficient.The numerical simulation results showed that the general gas holdup and the uniformity of gas distribution both increased with increasing superficial gas velocity.The predicted general gas holdup with ionic liquid drag coefficient agreed with the experimental data better than that of Schiller-Naumann model.Ionic liquid drag coefficient overestimated the general gas holdup and the average error of simulation result with drag coefficient was 8.1%.Schiller-Naumann underestimated general gas holdup and the average error of simulation result with Schiller-Naumann model was 22.8%.The bubble size distribution was studied by using PBM model, discrete method was used to solve the population balance equations, and the bubbles in the column were divided into 10 groups ranging from 1 mm to 9.85 mm.The simulated bubble size distributions agreed with experimental results.The bubbles of low superficial gas velocity were larger than those of high superficial gas velocity, and the bubble size range of low gas velocity was wider than that of high gas velocity.This was caused by different bubble coalescence and breakup rates of different superficial gas velocities The study of bubble and liquid velocity distribution showed that the uniformity of liquid velocity in the column increased with increasing gas velocity.
来源 化工学报 ,2011,62(10):2699-2706 【核心库】
DOI 10.3969/j.issn.0438-1157.2011.10.004
关键词 离子液体 ; 鼓泡塔 ; 计算流体力学 ; Euler-Euler模型 ; 群平衡模型
地址

中国科学院过程工程研究所, 多相复杂系统国家重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0438-1157
学科 化学工业
基金 国家自然科学基金重点项目
文献收藏号 CSCD:4354861

参考文献 共 21 共2页

1.  Blanchard L A. High-pressure phase behavior of ionic liquid/CO_2 systems. J. Phys. Chem. B,2001,105:2437-2444 被引 58    
2.  Kamps ?. Solubility of CO_2 in the ionic liquid[bmim ] [PF_6 ]. J. Chem. Eng. Data,2003,48:746-749 被引 1    
3.  Karadas F. Review on the use of ionic liquids(ILs)as alternative fluids for CO_2 capture and natural gas sweetening. Energy Fules,2010,24(11):5817-5828 被引 22    
4.  Yuan X. Foundamental application research of CO_2 absorption in ionic liquids. Inst.Pros.Eng.C.A.S.,2007 被引 1    
5.  Bates E. CO_2 capture by a task-specific ionic liquid. J. Am. Chem. Soc.,2002,124(6):926-927 被引 191    
6.  Dong H F. The rise and deformation of a single bubble in ionic liquids. Chem. Eng. Sci.,2010,65:3240-3248 被引 7    
7.  Wang X L. Numerical simulation of single bubble motion in ionic liquid. Chem. Eng. Sci.,2010,65:6036-6047 被引 11    
8.  Ekambara K. CFD simulation of bubble column reactions:1D,2D, 3D approach. Chem. Eng. Sci.,2005,60:6733-6746 被引 8    
9.  Zhang D S. Euler-Euler modeling of flow, mass transfer, and chemical reaction in a bubble column. Ind. Eng. Chem. Res.,2009,48:47-57 被引 3    
10.  Troshko A A. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis. Chem. Eng. Sci.,2008,64:892-903 被引 1    
11.  Cachaza E M. Simultaneous computational fluid dynamics(CFD)simulation of the hydrodynamics and mass transfer in a partially aerated bubble column. Ind. Eng. Chem. Res.,2009,48:8685-8696 被引 3    
12.  Lehr F. Bubble size distribution and flow fields in bubble columns. AIChE J.,2002,48(11):2426-2443 被引 38    
13.  Wang T F. A CFD-PBM coupled model for gas-liquid flows. AIChE J.,2006,52(1):125-140 被引 19    
14.  Li G. CFD simulation of gas-liquid flow in bubble column. J. Chem. Ind. Eng(China)(in Chinese),2008,59(8):1958-1965 被引 1    
15.  Lane G L. Numerical modeling of gas-liquid flow in stirred tanks. Chem. Eng. Sci.,2005,60(8/9):2203-2214 被引 20    
16.  Hulburt H M. Some problems in particle technology—a statistical mechanical formulation. Chem. Eng. Sci.,1964,19(8):555-574 被引 42    
17.  Luo H. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J.,1996,42(5):1225 被引 80    
18.  Dorao C A. Numerical of the moments of the population balance equation. J. Computational and Applied Mathematics,2005,196(2):619-633 被引 2    
19.  Sanyal J. On the comparison between population balance models for CFD simulation of bubble columns. Ind. Eng. Chem. Res.,2005,44(14):5063-5072 被引 9    
20.  Chen P. CFD modeling of bubble columns flows: implementation of population balance. Chem. Eng. Sci.,2004,49:5201-5207 被引 12    
引证文献 10

1 鲍迪 非常规介质离子液体中气泡行为研究进展 工程研究-跨学科视野中的工程,2015,7(3):305-312
被引 1

2 陈阿强 基于相群平衡模型的浮选气泡聚并模拟 化工学报,2015,66(12):4780-4787
被引 7

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号