帮助 关于我们

返回检索结果

赣南西华山钨矿床的流体混合作用:基于H,O同位素模拟分析
Fluid mixing in Xihuashan tungsten deposit, Southern Jixangxi Province:Hydrogen and oxygen isotope simulation analysis

查看参考文献60篇

文摘 赣南西华山钨矿床是我国典型的大型石英脉型黑钨矿矿床.H,O同位素的研究表明,该矿床δD值-43‰~-66‰,石英δ18O值2.3‰~13.2‰,对应的成矿流体δ18O值-8.7‰~7.6‰,表明成矿流体为岩浆水与大气降水的混合流体.不同机制下矿物O同位素模拟计算表明,冷却,沸腾和混合作用所形成矿物的O同位素组成明显不同,不同矿化阶段矿物O同位素值的投影点与冷却和沸腾演化曲线相差甚远,而与混合演化曲线比较吻合.冷却或沸腾不是西华山钨矿床成矿流体演化的主要过程,岩浆水与大气降水的混合可能才是导致钨矿化的主因
其他语种文摘 Xihuashan tungsten deposit in Southern Jiangxi Province is a large typical quartz-vine type wolframite deposit. Based on hydrogen and oxygen isotope data measured in this paper and others, the δD values of fluid inclusions are -43‰ to -66‰, and the δ18O values of quartz in the deposits vary between 2.3‰ and 13.2‰, while δ18O values of the mineralizing fluids between -8.7‰ and 7.6‰.It is suggested that the ore fluids were a mixture between magmatic water and meteoric water. The oxygen isotope composition of minerals precipitating by each mechanism was modeled. It is evident that cooling, boiling and fluid mixing have a contrasting influence on the oxygen isotope composition of the precipitating minerals. The mixing of a magmatic fluid with meteoric water reproduces the observed δ18O composition of the ore and gangue minerals remarkably well. Cooling or boiling is not a major process in the evolution of ore-forming fluids, while the magmatic water mixed with meteoric water may result in wolframite deposition
来源 地球化学 ,2011,40(1):45-55 【核心库】
关键词 石英脉型钨矿床 ; O同位素 ; 混合作用 ; 模拟分析 ; 西华山
地址

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002

语种 中文
文献类型 研究性论文
ISSN 0379-1726
学科 地质学
基金 国家973计划
文献收藏号 CSCD:4153057

参考文献 共 60 共3页

1.  Beuchat S. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru:Fluid inclusion and stable isotope evidence. Chem Geol,2004,210(1/4):201-224 被引 21    
2.  Morishita Y. Fluid evolution and geobarometry on the Ohtani and Kaneuchi tungsten-quartz vein deposits, Japan:Oxygen and carbon isotopic evidence. Miner Deposita,1991,26(1):40-50 被引 2    
3.  So C S. Origin and evolution of W-Mo-producing fluids in a granitic hydrothermal system:Geochemical studies of quartz vein deposits around the Susan Granite, Hwanggangri District, Republic of Korea. Econ Geol,1994,89(2):246-267 被引 14    
4.  Rice C M. Assessment of grid-based whole-rockδD surveys in exploration:Boulder County epithermal tungsten deposit, Colorado. Econ Geol,2001,96(1):133-143 被引 3    
5.  Rios F J. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil. J South Am Earth Sci,2003,15(7):787-802 被引 15    
6.  王旭东. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据. 科学通报,2009,54(21):3338-3344 被引 16    
7.  O'Reilly C. Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization,SE Ireland. Miner Deposita,1997,32(6):569-580 被引 12    
8.  Ramboz C. The evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies. Geochim Cosmochim Acta,1985,49(1):205-219 被引 21    
9.  Samson I M. Fluid evolution and mineralization in a subvolcanic granite stock:The Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada. Econ Geol,1990,85(1):145-163 被引 13    
10.  Seal R R. Stockwork tungsten (scheelite)-molybdenum mineralization, Lake George, southwestern New Brunswick. Econ Geol,1987,82(5):1259-1282 被引 17    
11.  曹晓峰. 共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例. 矿床地质,2009,28(5):611-620 被引 25    
12.  Clark A H. The San Judas Tadeo W (-Mo, Au)deposit:Permian lithophile mineralization in southeastern Peru. Econ Geol,1990,85(7):1651-1668 被引 6    
13.  龚庆杰. 柿竹园钨多金属矿床形成机制的物理化学分析. 地学前缘,2004,11(4):617-625 被引 22    
14.  Jackson N J. Evolution of the Cornubian ore field, Southwest England:Part II. Mineral deposits and ore-forming processes. Econ Geol,1989,84(5):1101-1133 被引 7    
15.  Landis G P. Geologic, fluid inclusion, and stable isotope studies of the Pasto Buena tungsten-base metal ore deposit, Northern Peru. Econ Geol,1974,69(7):1025-1059 被引 18    
16.  席斌斌. 江西省全南县大吉山钨矿成矿流体演化特征. 地质学报,2008,82(7):956-966 被引 24    
17.  Giamello M. The W-Mo deposit of Perda Majori(SE Sardinia, Italy):A fluid inclusion study of ore and gangue minerals. Eur J Mineral,1992,4(5):1079-1084 被引 15    
18.  Graupner T. Fluid regime and ore formation in the tungsten(-yttrium)deposits of Kyzyltau(Mongolian Altai): Evidence for fluid variability in tungsten-tin ore systems. Chem Geol,1999,154(1/4):21-58 被引 16    
19.  Lynch J V G. Hydrothermal alteration, veining, and fluid-inclusion characteristics of the Kalzas wolframite deposit, Yukon. Can J Earth Sci,1989,26(10):2106-2115 被引 9    
20.  Polya D A. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal:Implications for models of ore genesis. Econ Geol,1989,84(5):1134-1152 被引 16    
引证文献 16

1 王蝶 与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较 地学前缘,2011,18(5):121-131
被引 13

2 丰成友 赣南八仙脑破碎带型钨锡多金属矿床成矿流体和年代学研究 岩石学报,2012,28(1):52-64
被引 13

显示所有16篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号