帮助 关于我们

返回检索结果

青藏高原地表辐射的气候特征
Climatological Characteristics of Surface Radiation over the Tibetan Plateau

查看参考文献26篇

蒋兴文 1   李跃清 2  
文摘 青藏高原由于条件艰苦, 地面观测站点少, 对其地表辐射整体特征的认识还较初步. 本文利用全球能量与水分循环试验的地表辐射收支工程(GEWEX-SRB)提供的卫星资料反演的1983年7月到2005年6月的地表辐射资料, 研究了青藏高原地表辐射的基本特征及云对辐射的影响. 研究结果表明: ①地表向下短波辐射全年均在高原西南部最大, 在雅鲁藏布江下游最小; ②地表向上短波辐射最大值主要出现在春季, 而最小值出现的时间存在区域差异; ③地表有效辐射全年均为正值, 在高原西南部最大, 东南部最小; ④地表净辐射由南向北逐渐减少, 夏季最大, 冬季最小; ⑤云的地表向下和向上短波辐射强迫均在高原东南部最大, 西部最小; ⑥云的地表向下长波辐射强迫在高原西部边缘地区最大, 西南地区最小; ⑦云的地表净辐射强迫春、夏季在整个高原均为负值, 秋季在高原东南部为负值、西北部为正值, 冬季在整个高原均为正值并且水平变化小
其他语种文摘 Climatological characteristics of surface radiation over the Tibetan Plateau (TP) are still unclear due to relatively sparse observations caused by the harsh environment. Using the state-of-the-art satellite products of surface radiation provided by the Global Energy and Water Cycle Experiment-Surface Radiation Budget (GEWEX-SRB), flux characteristics of surface downward and upward shortwave and longwave radiation, effective radiation and net radiation, and their relationships with cloud were comprehensively investigated. The maximum surface downward shortwave radiation flux (SDSWRF) was observed to be over the southwestern TP around the year. The minimum SDSWRF was distributed in the lower reaches of the Brahmaputra River. As for seasonal variation, the maximum SDSWRF was found to be in summer over portions of the southwestern and southeastern TP. The maximum surface upward shortwave radiation flux (SUSWRF) generally took place in spring. The minimum SUSWRF, however, varies with locations. The complexity of the temporal-spatial distribution of land surface albedo would be the principal reason for the spatial and temporal heterogeneity in SUSWRF. Spatial distributions of surface downward longwave radiation flux (SDLWRF) and surface upward longwave radiation flux (SULWRF) were both characterized by that the minimum values were found to be approximately in the center of the TP. The magnitude of both SDLWRF and SULWRF seemed to be similar in spring and autumn, which were larger than in winter and less than in summer. The effective radiation flux was positive all year around. It was found that in general, the surface net radiation flux (SNRF) decreased gradually from the south to the north over the study area. The minimum SNRF were distributed in the Qaidam Basin and the lower reaches of the Brahmaputra River. The maximum cloud radiative forcing of surface downward shortwave (CRFSDSW) was in the southeastern TP in summer, and the minimum was in the west part of the TP in winter. Characteristics of cloud radiative forcing of surface upward shortwave were observed to be the same as CRFSDSW. The value of cloud radiative forcing of surface downward longwave (CRFSDLW) remained positive all year around, whose maximum was over the west edge of TP, and the minimum was generally in the southwest of the TP. The magnitude of cloud radiation forcing of surface upward longwave was generally small. As a result, the spatial pattern of cloud radiative forcing of surface effective radiation was the same as the minus of CRFSDLW. The cloud radiative forcing of surface net flux (CRFSNF) was generally negative in spring and summer across the TP. It was negative in the southeastern TP and positive in the northwestern TP in autumn. In general, CRFSNF was homogenous and positive over the TP. The magnitude of CRFSNF peaked in summer and was smallest in autumn and winter
来源 资源科学 ,2010,32(10):1932-1942 【核心库】
关键词 青藏高原 ; 地表辐射 ; 云辐射强迫
地址

1. 兰州大学大气科学学院, 兰州, 730000  

2. 中国气象局成都高原气象研究所, 成都, 610072

语种 中文
文献类型 研究性论文
ISSN 1007-7588
学科 能源与动力工程
基金 国家自然科学基金项目 ;  中国气象局成都高原气象研究所基本科研业务费专项
文献收藏号 CSCD:4076885

参考文献 共 26 共2页

1.  叶笃正. 青藏高原气象学,1979 被引 246    
2.  Wu Guoxiong. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor,2007,8(4):770-789 被引 106    
3.  Michio Yanai. Effects of the Tibetan Plateau. The Asian Monsoon,2006 被引 1    
4.  高国栋. 青藏高原太阳辐射能量的收入状况. 气象,1980,6(2):30-32 被引 2    
5.  高国栋. 青藏高原太阳辐射能量的支出状况. 气象,1980,6(3):6-7 被引 2    
6.  谢贤群. 青藏高原夏季地面辐射场的若干特征值. 科学通报,1983,28(7):426-429 被引 2    
7.  翁笃鸣. 青藏高原夏季地面有效辐射和大气逆辐射特征分析. 科学通报,1984,29(13):796-799 被引 3    
8.  翁笃鸣. 中国地表净辐射的气候学研究. 南京气象学院学报,1988,11(2):132-143 被引 12    
9.  翁笃鸣. 中国太阳直接辐射的气候计算. 太阳能学报,1988,7(2):121-130 被引 1    
10.  翁笃鸣. 青藏高原地表净辐射若干重要特征研究. 南京气象学院学报,1991,14(2):151-159 被引 18    
11.  翁笃鸣. 中国大气逆辐射的气候计算及其分布特征. 南京气象学院学报,1992,15(1):1-9 被引 5    
12.  翁笃鸣. 青藏高原地表净辐射的气候学研究. 南京气象学院学报,1993,16(4):464-470 被引 12    
13.  季国良. 青藏高原地区有效辐射的计算及其分布特征. 高原气象,1987,6(2):141-149 被引 17    
14.  季国良. 青藏高原的长波辐射特征. 高原气象,1995,14(4):451-458 被引 44    
15.  季国良. 藏北高原太阳辐射能收支的季节变化. 太阳能学报,1995,16(4):340-346 被引 28    
16.  卞林根. 1998年夏季青藏高原辐射平衡分量特征. 大气科学,2001,25(5):577-588 被引 54    
17.  巩远发. 1997/1998年青藏高原西部地区辐射平衡各分量变化特征. 气象学报,2005,63(2):225-235 被引 22    
18.  钱泽雨. 藏北高原典型草甸下垫面与HEIFE沙漠区辐射平衡气候学特征对比分析. 太阳能学报,2003,24(4):453-460 被引 30    
19.  马伟强. 藏北高原地面辐射收支的初步分析. 高原气象,2004,23(3):348-352 被引 48    
20.  翁笃鸣. 应用ISCCP云资料反演青藏高原地面总辐射场. 南京气象学院学报,1997,20(1):41-46 被引 10    
引证文献 14

1 于涵 基于CERES卫星资料的青藏高原有效辐射变化规律 高原气象,2018,37(1):106-122
被引 7

2 次仁尼玛 青藏高原羊八井地区地表辐射的季节变化特征 高原气象,2013,32(5):1253-1260
被引 11

显示所有14篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号